Sketch of Lecture 31 Mon, 4/8/2019

Review. SVD

Example 145. Determine the SVD of A:[ 22 }
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Comment. In contrast to our previous example, rank(A) = 1. It follows that A”A has eigenvalue 0, so that
0 is a singular value of A.

Solution. ATA:[ 2 g } has 10-eigenvector [ i } and 0-eigenvector [ _11 }
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We conclude that V—E{l 1 }and Z—{ 0]
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We cannot obtain us in the same way because o2 =0. Since for every vector us, Avs = oous, we can choose
uo as we wish, as long as the columns of U are orthonormal in the end.

uQZ%[ —21 ] (but ’LLQI%[ _12 ] works just as well)
Hence, U:%[ f _21 ]
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In summary, A=USV W|thU_\/g{1 ; },z_{ O},V_ﬁ{l ] }

Check. Do check that, indeed, A=UXVT,
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and 1-eigenvector [ 1 }

1
|

Example 146. Determine the SVD of A= l
1
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Solution. ATA:{ 31 ;1 } has 3—eigenvector 71
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Since ATA=VXTSVT, we conclude that V =

S,_.
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w3 is chosen so that the matrix U is orthogonal. Hence, ugzi[ 1} (or 'U,3:i|: 1 ])
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Hence, U=| 1/v6 1/v2 —-1/vV3 |-
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In summary,A:UEVTWith U:{ 12//\/\5 1/0ﬁ 1;\/{2 },Z:{\{F ?},V:%[ 711 1}
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How did we find ug? We already have the vectors w; and uso, and need a vector orthogonal to both.
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That is, we need to find the vector spanning span 1,1 =col 11 = null([ o1 1 D
-1 1 -1 1

[Without the intermediate steps, can you see why the null space consists of precisely the vectors orthogonal
to both w1 and u2?]

More generally, proceeding like this, we can always fill in “missing’’ vectors u; to obtain an orthonormal basis
U1, W9, ..., Wy, that we can use as the columns of U.
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