Review. SVD

Example 145. Determine the SVD of $A = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$.

Comment. In contrast to our previous example, rank(A) = 1. It follows that A^TA has eigenvalue 0, so that 0 is a singular value of A.

Solution. $A^TA = \begin{bmatrix} 5 & 5 \\ 5 & 5 \end{bmatrix}$ has 10-eigenvector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and 0-eigenvector $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

We conclude that $V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ and $\Sigma = \begin{bmatrix} \sqrt{10} & 0 \end{bmatrix}$.

$$\boldsymbol{u}_1 = \frac{1}{\sigma_1} A \boldsymbol{v}_1 = \frac{1}{\sqrt{10}} \left[\begin{array}{cc} 2 & 2 \\ 1 & 1 \end{array} \right] \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1 \\ 1 \end{array} \right] = \frac{1}{\sqrt{20}} \left[\begin{array}{c} 4 \\ 2 \end{array} \right] = \frac{1}{\sqrt{5}} \left[\begin{array}{c} 2 \\ 1 \end{array} \right]$$

We cannot obtain u_2 in the same way because $\sigma_2 = 0$. Since for every vector u_2 , $Av_2 = \sigma_2 u_2$, we can choose u_2 as we wish, as long as the columns of U are orthonormal in the end.

$$m{u}_2\!=\!rac{1}{\sqrt{5}}\!\left[egin{array}{c} -1 \ 2 \end{array}
ight]$$
 (but $m{u}_2\!=\!rac{1}{\sqrt{5}}\!\left[egin{array}{c} 1 \ -2 \end{array}
ight]$ works just as well)

Hence, $U = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$

In summary, $A = U\Sigma V^T$ with $U = \frac{1}{\sqrt{5}}\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$, $\Sigma = \begin{bmatrix} \sqrt{10} \\ 0 \end{bmatrix}$, $V = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.

Check. Do check that, indeed, $A = U\Sigma V^T$.

Example 146. Determine the SVD of $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Solution. $A^TA = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ has 3-eigenvector $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and 1-eigenvector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Since $A^TA = V\Sigma^T\Sigma V^T$, we conclude that $V = \frac{1}{\sqrt{2}}\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ and $\Sigma = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$.

$$\boldsymbol{u}_1 = \frac{1}{\sigma_1} A \boldsymbol{v}_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} -2 \\ 1 \\ -1 \end{bmatrix}$$

$$\boldsymbol{u}_2 = \frac{1}{\sigma_2} A \boldsymbol{v}_2 = \frac{1}{1} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Hence,
$$U = \begin{bmatrix} -2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ -1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \end{bmatrix}$$

In summary, $A = U\Sigma V^T$ with $U = \begin{bmatrix} -2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ -1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \end{bmatrix}$, $\Sigma = \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$, $V = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$.

How did we find u_3 ? We already have the vectors u_1 and u_2 , and need a vector orthogonal to both.

That is, we need to find the vector spanning $\operatorname{span}\left\{\left[\begin{array}{c} -2\\1\\-1\end{array}\right],\left[\begin{array}{c} 0\\1\\1\end{array}\right]\right\}^{\perp} = \operatorname{col}\left(\left[\begin{array}{cc} -2&0\\1&1\\-1&1\end{array}\right]\right)^{\perp} = \operatorname{null}\left(\left[\begin{array}{cc} -2&1&-1\\0&1&1\end{array}\right]\right).$

Without the intermediate steps, can you see why the null space consists of precisely the vectors orthogonal to both u_1 and u_2 ?

More generally, proceeding like this, we can always fill in "missing" vectors u_i to obtain an orthonormal basis $u_1, u_2, ..., u_m$ that we can use as the columns of U.