Sketch of Lecture 29 Wed, 4/3/2019

Review. complex numbers, fundamental theorem of algebra

Example 141. We can identify complex numbers z + iy with vectors [ z } in R2. Then, what
is the geometric effect of multiplying with ¢7?

Solution. Algebraically, the effect of multiplying = + iy with 4 obviously is i(z +iy) = —y +ix.

Since multiplication with i is obviously linear, we can represent it using a 2 X 2 matrix J acting on vectors [ Z }

17 _To .. . oL o]l _T -1 .. . .
J{O}—{l} (this is the same as saying 7- 1 =1) and J{l}—{ o }(thls is the same as saying i-i=—1).

Hence, J:{ (1) Bl } This is precisely the rotation matrix for a rotation by 90°.
In other words, multiplication with ¢ has the geometric effect of rotating complex numbers by 90°.
Comment. The relation i2= —1 translates to J2=—1.

Complex numbers as 2 X 2 matrices. In light of the above, we can express complex numbers x + iy as the

2X2matrix x ] +yJ = [ 5 ;y } Adding and multiplying these matrices behaves exactly the same way as

adding or multiplying the complex numbers directly.

For instance, (2 -+ 3¢)(4 — i) =8 + 10i — 3i2 = 11 + 10i versus[§ —23“_41 H:[“ —10}.

2— 34 2— 34 — —1 1
z fversus[2 S]] 28]

Likewise for inverses: TE TG 3 - 13 3

Example 142. (extra) Find a unitary matrix ) whose first column is a multiple of { 1 }

Solution. We need to find a vector [ Z } such that [ 1 r{ ‘; } =a —1ib=0. Choose, say, a=1, b=1.

This leads to the unitary matrix Q:%[ 1 i } Indeed, Q*Q:%{ jl 712' }%{ 1 i }:{ (1) (1) }

\ More details on the spectral theorem

Let us add (v, w) to our notations for the dot product: (v, w) =viw=v w.

e In our story of orthogonality, the important player has been the dot product. However, one could argue
that the fundamental quantity is actually the norm:

(v, w) :%(||v+w||2— |lv —wl/?). See Example 18.

e Accepting the dot product as immensely important, we see that symmetric matrices (i.e. matrices A
such that A= AT) are of interest.

For any matrix A, (Av, w) = (v, ATw).
It follows that, a matrix A is symmetric if and only if (Av, w) = (v, Aw) for all vectors v, w.

e Similarly, let Q be an orthogonal matrix (i.e. Q is a square matrix with Q7Q =1).
Then, (Qv, Qw) = (v, w).
In fact, a matrix A is orthogonal if and only if (Av, Aw) = (v, w) for all vectors v, w.

Comment. We observed in Example 134 that orthogonal matrices @) correspond to rotations (det Q =
1) or reflections (det Q = —1) [or products thereof]. The equality (Quv, Qw) = (v, w) encodes the
fact that these types (and only these!) of geometric transformations preserve angles and lengths.
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(Spectral theorem)

A n x n matrix A is symmetric if and only if it can be decomposed as A= PD P where

e D is a diagonal matrix, (n xn)

The diagonal entries \; are the eigenvalues of A.

e P is orthogonal. (n xn)

The columns of P are eigenvectors of A.

Note that, in particular, A is always diagonalizable, the eigenvalues (and hence, the eigenvectors) are all real,
and, most importantly, the eigenspaces of A are orthogonal.

The “only if’ part says that, if A is symmetric, then we get a diagonalization A= PD PT. The “if’ part says
that, if A=PDPT, then A is symmetric (which follows from AT = (PD PT)T = (PT)TDTPT = pD PT = A).

Let us prove the following important parts of the spectral theorem.

Theorem 143.
(a) If A is symmetric, then the eigenspaces of A are orthogonal.
(b) If Ais real and symmetric, then the eigenvalues of A are real.

Proof.

(a) We need to show that, if v and w are eigenvectors of A with different eigenvalues, then (v, w)=0.
Suppose that Av =Av and Aw = pw with \ £ pu.
Then, A{v,w) = v, w) = (Av, w) = (v, ATw) = (v, Aw) = (v, pw) = p{v, w).
However, since A # p, A(v, w) = p(v,w) is only possible if (v, w)=0.

(b) Suppose ) is a nonreal eigenvalue with nonzero eigenvector v. Then, ¥ is a \-eigenvector and, since
A £ A, we have two eigenvectors with different eigenvalues. By the first part, these two eigenvectors

must be orthogonal in the sense that v7v = 0. But 7v = v*v = ||v||2 # 0. This shows that it is
impossible to have a nonzero eigenvector for a nonreal eigenvalue. t

Let us highlight the following point we used in our proof:

| Let A be a real matrix. If v is a \-eigenvector, then @ is a \-eigenvector.

See, for instance, Example 78. This is just a consequence of the basic fact that we cannot algebraically
distinguish between +i and —i.
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