
Sketch of Lecture 29 Wed, 4/3/2019

Review. complex numbers, fundamental theorem of algebra

Example 141. We can identify complex numbers x+ iy with vectors
�
x
y

�
in R2. Then, what

is the geometric e�ect of multiplying with i?

Solution. Algebraically, the e�ect of multiplying x+ iy with i obviously is i(x+ iy)=¡y+ ix.
Since multiplication with i is obviously linear, we can represent it using a 2�2matrix J acting on vectors

�
x
y

�
.

J
�
1
0

�
=

�
0
1

�
(this is the same as saying i � 1= i) and J

�
0
1

�
=

�
¡1
0

�
(this is the same as saying i � i=¡1).

Hence, J =
�
0 ¡1
1 0

�
. This is precisely the rotation matrix for a rotation by 90�.

In other words, multiplication with i has the geometric e�ect of rotating complex numbers by 90�.
Comment. The relation i2=¡1 translates to J2=¡I.
Complex numbers as 2� 2 matrices. In light of the above, we can express complex numbers x+ iy as the
2� 2 matrix xI + yJ =

�
x ¡y
y x

�
. Adding and multiplying these matrices behaves exactly the same way as

adding or multiplying the complex numbers directly.
For instance, (2+ 3i)(4¡ i)= 8+ 10i¡ 3i2= 11+ 10i versus

�
2 ¡3
3 2

��
4 1
¡1 4

�
=

�
11 ¡10
10 11

�
.

Likewise for inverses: 1

2+ 3i
=

2¡ 3i

(2+ 3i)(2¡ 3i) =
2¡ 3i
13

versus
�
2 ¡3
3 2

�¡1
=

1

13

�
2 3
¡3 2

�

Example 142. (extra) Find a unitary matrix Q whose �rst column is a multiple of
�
1
i

�
.

Solution. We need to �nd a vector
�
a
b

�
such that

�
1
i

��� a
b

�
= a¡ ib=0. Choose, say, a= i, b=1.

This leads to the unitary matrix Q=
1

2
p

�
1 i
i 1

�
. Indeed, Q�Q=

1

2
p

�
1 ¡i
¡i 1

�
1

2
p

�
1 i
i 1

�
=

�
1 0
0 1

�
.

More details on the spectral theorem

Let us add hv ;wi to our notations for the dot product: hv ;wi=vTw= v �w.

� In our story of orthogonality, the important player has been the dot product. However, one could argue
that the fundamental quantity is actually the norm:
hv;wi= 1

4
(kv+wk2¡kv¡wk2). See Example 18.

� Accepting the dot product as immensely important, we see that symmetric matrices (i.e. matrices A
such that A=AT) are of interest.
For any matrix A, hAv ;wi= hv ; ATwi.
It follows that, a matrix A is symmetric if and only if hAv;wi= hv; Awi for all vectors v;w.

� Similarly, let Q be an orthogonal matrix (i.e. Q is a square matrix with QTQ= I).
Then, hQv; Qwi= hv ;wi.
In fact, a matrix A is orthogonal if and only if hAv; Awi= hv ;wi for all vectors v;w.
Comment. We observed in Example 134 that orthogonal matrices Q correspond to rotations (detQ=
1) or re�ections (det Q = ¡1) [or products thereof]. The equality hQv; Qwi = hv;wi encodes the
fact that these types (and only these!) of geometric transformations preserve angles and lengths.
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(Spectral theorem)
A n�n matrix A is symmetric if and only if it can be decomposed as A=PDPT , where

� D is a diagonal matrix, (n�n)

The diagonal entries �i are the eigenvalues of A.

� P is orthogonal. (n�n)

The columns of P are eigenvectors of A.

Note that, in particular, A is always diagonalizable, the eigenvalues (and hence, the eigenvectors) are all real,
and, most importantly, the eigenspaces of A are orthogonal.
The �only if� part says that, if A is symmetric, then we get a diagonalization A=PDPT . The �if� part says
that, if A=PDPT , then A is symmetric (which follows fromAT =(PDPT)T =(PT )TDTPT =PDPT =A).

Let us prove the following important parts of the spectral theorem.

Theorem 143.

(a) If A is symmetric, then the eigenspaces of A are orthogonal.

(b) If A is real and symmetric, then the eigenvalues of A are real.

Proof.

(a) We need to show that, if v and w are eigenvectors of A with di�erent eigenvalues, then hv ;wi= 0.
Suppose that Av=�v and Aw= �w with �=/ �.

Then, �hv;wi= h�v ;wi= hAv;wi= hv; ATwi= hv ; Awi= hv; �wi= �hv;wi.
However, since �=/ �, �hv;wi= �hv;wi is only possible if hv ;wi=0.

(b) Suppose � is a nonreal eigenvalue with nonzero eigenvector v. Then, v� is a ��-eigenvector and, since
�=/ ��, we have two eigenvectors with di�erent eigenvalues. By the �rst part, these two eigenvectors
must be orthogonal in the sense that v�Tv = 0. But v�Tv = v�v = kvk2 =/ 0. This shows that it is
impossible to have a nonzero eigenvector for a nonreal eigenvalue. �

Let us highlight the following point we used in our proof:

Let A be a real matrix. If v is a �-eigenvector, then v� is a ��-eigenvector.

See, for instance, Example 78. This is just a consequence of the basic fact that we cannot algebraically
distinguish between +i and ¡i.
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