Sketch of Lecture 24 Fri, 3/8/2019

Example 116. We only discuss linear differential equations (DEs). Non-linear DEs include
y'=y?+1 or the second-order equation 3" =sin(ty’) + .

The order of a DE indicates the highest occuring derivative.
Note, however, that "' =sin(¢)y’+ y is a linear DE, because y and its derivatives occur linearly.

We will see here how to solve those linear DEs which have constant coefficients. That is, the coefficients of
y are constants, as opposed to functions (like sin(¢)) depending on ¢.

Review.

e The solution to y’'= Ay, y(0) =yo is y(t) = e tyo.
Why? Because y’(t) = Ae?tyg= Ay(t) and y(0) ="y = yo.

o If we have the diagonalization A= PD P!, then ¢ = PeP?P~! (and et = PePtP~1).
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Example 117. Solve the initial value problem y’:{ —01 712 }y, y(0) :[ g }

Solution.

e A= [ _01 _12 } has characteristic polynomial —A(1 —X) —2=(A+4+1)(A —2).

Hence, the eigenvalues of A are —1,2.

The —1-eigenspace null([ _11 —22 }) has basis [ f }

The 2-eigenspace null([ :f :f D has basis [ *11 }
Hence, A=PDP~" with P:[ P } and D:[ T }
e Finally, we compute the solution (1) = e yo:

y(t) = PePtP~lyg

Example 118. Write the (second-order) differential equation y”” =2y’ + y as a system of (first-
order) differential equations.

Solution. Write i1 =y and y2 =1vy’. Then 3" =2y’ + y becomes y5 =212 + y1.

r_
Therefore, y” = 2y’ + y translates into the first-order system { 71— Y2 .
Y vy Y {yé =y1+2y2

In matrix form, this is y’:[ (1) ; }y.

Comment. Hence, we care about systems of differential equations, even if we work with just one function.

Note. The “trick” of looking at the pair [ 3, } instead of a single function is what we used to translate the
Fibonacci recurrence into a 2 x 2 system.
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Example 119. Write the (third-order) differential equation 3" = 3y” — 2y’ + y as a system
of (first-order) differential equations.

/

Solution. Write y1 =9, y2 =y’ and y3=1vy"".
r_
Yy1i=192

Then, y’"" =3y’ — 2y’ + y translates into the first-order system < y5 = y3 .

0 y3=1y1 — 2y2+3y3

In matrix form, this is y’' = y.

0 1
0 0 1
1 -2 3

‘ The Jordan normal form ‘

Note that we currently only know how to compute e when A is diagonalizable. Our next
goal is to be able to compute the matrix exponential for all matrices.

Example 120. Diagonalize, if possible, the matrix A= [ 4 i }

Solution. The eigenvalues of A are 4, 4.
However, the 4-eigenspace null([ 0 (1) D is only 1-dimensional.

Hence, A is not diagonalizable.

|—>\ 1
Definition 121. A \-Jordan block is a matrix of the form { A - ) |
A

Note that if this matrix is m X m, then its only eigenvalue is A (repeated m times).

As in the previous example, the \-eigenspace is 1-dimensional (which is as small as possible).

Theorem 122. (Jordan normal form) Every n x n matrix A can be written as A= PJP !,
where J is a block diagonal matrix
7 W
J.

J= 2
J;

with each J; a Jordan block. J is called the Jordan normal form of A.

Up to the ordering of the Jordan blocks, the Jordan normal form of A is unique.

Comment. If A is diagonalizable, then J is just a usual diagonal matrix.

Example 123. What are the possible Jordan normal forms of a 3 x 3 matrix with eigenvalues
4,4,47

4 4 41
Solution. [ 4 }[ 4 1}{ 4 1}
4 4 4

The dimension of the 4-eigenspace equals the number of Jordan blocks: 3, 2, 1, respectively.

41 4
Comment. Note that, say, [ 4 } is equivalent to [ 41 } because the ordering of the diagonal blocks
4 4
does not matter (as you known from diagonalization).
Armin Straub 52

straub@southalabama.edu



