Sketch of Lecture 21 Fri, 3/1/2019

1 -1
Example 101. Let A be the matrix for orthogonally projecting onto W =span l 1 1,[ 0 ]
1 1

(a) Diagonalize A (without first computing A) as A= PDPT.

Comment. This gives us yet another way to compute projection matrices: we can directly write down
the matrices P, D for the diagonalization A= PD PT. The main point here is that the diagonalization
of a A nicely reveals all the information about the projection.

(b) Is A invertible, orthogonal, symmetric?
Solution.

(a) The eigenvalues of A are 1,1,0.
The 1-eigenspace of A is W (2-dimensional), and the O-eigenspace is W= (1-dimensional).
[Make sure this makes perfect sense!]

In order to achieve a diagonalization PD PT we need to choose P to be orthogonal (which we can do
here because the eigenspaces are orthogonal).

1
First, we need to compute a basis for WL, After a little work (do it!!), we find wt :span{[ -2 }}
1

1 [1/\/3 “1/v2 1/6 ]
We therefore choose D = 1 and, after normalizing columns, P=| 1,3 0 —2/6 |-
0 { 1/v3 1/vV2  1/V6 J
-1 1
0 -2 },We only get A=PDP~ L
1

Comment. If we choose P :[
1

e

(b) A is not invertible (because 0 is an eigenvalue) and therefore also cannot be orthogonal.
A is indeed symmetric. That's because AT = (PD PT)T = (PT)TDTPT = PD PT = A.

1 -2 1
By the way. Multiplying out A= PDP”, we can find that A:é{ -2 4 -2 }
1 -2 1

1 —1
Example 102. Let A be the matrix for reflecting through the plane W =span [ 1 ],[ 0 ]
1 1

(a) Diagonalize A (without first computing A) as A= PDPT,
(b) Is A invertible, orthogonal, symmetric?
Solution.

(a) This time, the eigenvalues of A are 1,1, —1.
The 1-eigenspace of A is W (the plane), and the —1-eigenspace is W= (the normal of the plane).

In order to achieve a diagonalization PD P”" we need to choose P to be orthogonal (which we can do
here because the eigenspaces are orthogonal).

1
As in the previous example, W+ :span{[ —2 }}
1

1 1/v3 —1/v2 1/6 ]
We therefore choose D = 1 and, after normalizing columns, P:{ 1//3 0 —2/86 J
—1

1/V3 1/V2 1/V6
(b) A is invertible (because 0 is not an eigenvalue).
By the same reasoning as in the previous example, A is symmetric.

Finally, note that A% = I (reflecting twice isn't doing anything), so that A~! = A. It follows that A
is orthogonal, because A=1=A= AT,
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2 2 -1
By the way. Multiplying out A= PD P”, we can find that A:;{ 2 -1 2 }
-1 2 2

Comment. Similarly, a n X n matrix corresponds to a reflection (through a hyperplane) if and only if it has
a (n —1)-dimensional 1-eigenspace and a 1-dimensional —1-eigenspace and these two spaces are orthogonal.

An alternative way of computing reflection matrices. Realize that, if n is the vector orthogonal to the plane
(i.e. m is the normal vector of the plane), then reflecting v means sending it to v — 2(projection of v onto n).

1
We already observed that n:[ -2 }
1

. T, T
Hence, the reflection of v is v — 2(projection of v onto n) =v — 2n——2 =y — 272 Y — (I — 22 )v.
mn-n n'n n'n
] ] o T 1 Sof 1 -2 1 J 2 24
Accordingly, the reflection matrix is A=1 —2——= 1 -2 =2 4 —2 == 2 -1 2.
n'n 1 601 -2 1 3021 2 2

Comment. In other words, we got A from subtracting 2 times the projection matrix onto n from 1.
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