
Sketch of Lecture 14 Fri, 2/8/2019

Example 70. One practical application of the QR decomposition is solving systems of linear
equations.

Ax= b () QRx= b (now, multiply with QT from the left)

=) Rx=QTb

The last system is triangular and can be solved by back substitution.

A couple of comments are in order:

� If A is n�n and invertible, then the �=)� is actually a �()�.

� The equation Rx=QTb is always consistent! (Recall that R is invertible.)
Indeed, if A is not n�n or not invertible, then Rx=QTb gives the least squares solutions!
Why? ATAx̂=ATb () (QR)TQR

=RTQTQR

x̂=(QR)Tb () RTRx̂=RTQTb () Rx̂=QTb

[For the last step we need that R is invertible, which is always the case when A is m�n of rank n.]

� So, how does the QR way of solving linear systems compare to our beloved Gaussian elimination (LU)?
It turns out that QR is a little slower than LU but makes up for it in �numerical stability�.
What does that mean? When computing numerically, we use �oating point arithmetic and approx-
imate each number by an expression of the form 0.1234 � 10¡16. A certain (�xed) number of bits is
used to store the part 0.1234 (here, 4 decimal places of accuracy) as well as the exponent ¡16.
Now, here is something terrible that can happen in numerical computations: mathematically, the
quantities x and (x+ 1)¡ 1 are exactly the same. However, numerically, they might not. Take, for
instance, x= 0.1234 � 10¡6. Then, to an accuracy of 4 decimal places, x+ 1= 0.1000 � 101, so that
(x+1)¡ 1= 0.0000. But x=/ 0. We completely lost all the information about x.
To be numerically stable, an algorithm must avoid issues like that.

x̂ is a least squares solution of Ax= b

() Rx̂=QTb (where A=QR)

Example 71. Suppose Q has orthonormal columns. What is the projection matrix P for
orthogonally projecting onto col(Q)?

Solution. Recall that, to project onto Col(A), the projection matrix is P =A(ATA)¡1AT .
Since QTQ= I, to project onto Col(Q), the projection matrix is P =QQT .
Comment. A familiar special case is when we project onto a unit vector q: in that case, the projection of b
onto q is (q � b)q= q(qTb) = (qqT)b, so the projection matrix here is qqT .
Comment. In particular, if Q is not square, then QTQ= I but QQT =/ I. In some sense, QQT still �tries� to
be as close to the identity as possible: since it is the matrix projecting onto col(Q) it does act like the identity
for vectors in col(Q). (Vectors not in col(Q) are sent to their projection, that is, the closest to themselves
while restricted to col(Q).)
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Example 72. Suppose A is invertible. What is the projection matrix P for orthogonally
projecting onto col(A)?
Solution. If A is an invertible n � n matrix, then col(A) = Rn (because the n columns of A are linearly
independent and hence form a basis for Rn).
Since col(A) is the entire space we are not really projecting at all: every vector is sent to itself.
In particular, the projection matrix is P = I.

Example 73. What can we say about det(Q) if Q is orthogonal?

Solution. Write d = det(Q). Since Q¡1 = QT , we have 1

d
= d (recall that det(Q¡1) = 1 /det(Q) and

det(QT )=det(Q)) or, equivalently, d2=1. Hence, d=�1.
Both of these are possible as the examples Q=

�
1 0
0 1

�
and Q=

�
1 0
0 ¡1

�
illustrate.

Example 74. (homework) Diagonalize, if possible, the matrices

(a)
�
0 1
0 0

�
, and

(b)
�
0 ¡1
1 0

�
.

We will brie�y discuss these next class.
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