Sketch of Lecture 2 Wed, 1/9/2019
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Example 7. Let us do Gaussian elimination on A = [ 21 } until we have an echelon form:

As last class, the row operation can be encoded by multiplication with an “almost identity matrix" E:
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Since [ 1o } :{ ! (1) } (no calculation needed!), this means that
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We factored A as the product of a lower and an upper triangular matrix!

A=LU is known as the LU decomposition of A.

L is lower triangular, U is upper triangular.

If Aism Xn, then L is an invertible lower triangular m x m matrix, and U is a usual echelon form of A.

Every matrix A has a LU decomposition (after possibly swapping some rows of A first).

e The matrix U is just the echelon form of A produced during Gaussian elimination.

e The matrix L can be constructed, entry-by-entry, by simply recording the row operations
used during Gaussian elimination. (No extra work needed!)

Recall. The RREF (row-reduced echelon form) of A is obtained from the echelon form by
scaling the pivots to 1, and then eliminating the entries above the pivots. In our example, the
RREF of A is the 2 x 2 identity matrix.

[That's not surprising: A square matrix is invertible if and only if its RREF is the identity matrix. If that

isn't obvious to you, think about how you invert a matrix using Gaussian elimination (after augmenting with
identity...).]

Example 8. (extra) Determine the LU decomposition of A:{ ; Z }

. R2—3R R: .
Solution. A:{; i} 2TERT 2{(1) EQ}translates |nto{713 ?M; i}: (1) 32}
; 1 0]-1_J10 : | _[1o][1 2
Since [ P } —{ 31 } (no calculation needed!), we therefore have A—{ 31 M 0 o }

Review. Recall the Gauss—Jordan method of computing A~!. Starting with the augmented
matrix [A | ], we do Gaussian elimination until we obtain the RREF, which will be of the form
[I'| A='] so that we can read off A~

Why does that work? By our discussion, the steps of Gaussian elimination can be expressed by multiplication
(on the left) with a matrix B. Only looking at the first part of the augmented matrix, and since the RREF
of an invertible matrix is I, we have BA = I, which means that we must have B = A~!. The other part of
the augmented matrix (which is I initially) gets multiplied with B = A~ as well, so that, in the end, it is
BI=A"1 That's why we can read off A—1l
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Review: Eigenvalues and eigenvectors

|If Axz=)\x (and £+#0), then x is an eigenvector of A with eigenvalue ) (just a number). |

Note that for the equation Az = Ax to make sense, A needs to be a square matrix (i.e. n X n).

Key observation:

Az =)\x
— Ax— ) x=0
— (A-X)xz=0
This homogeneous system has a nontrivial solution x if and only if det(A — AI)=0.

To find eigenvectors and eigenvalues of A:

(a) First, find the eigenvalues X by solving det(A — A\I)=0.
det(A — AI) is a polynomial in )\, called the characteristic polynomial of A.

(b) Then, for each eigenvalue ), find corresponding eigenvectors by solving (A — A\I)x =0.

More precisely, we find a basis of eigenvectors for the \-eigenspace null(A — A\I).
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Example 9. A=]| 2 2 | has one eigenvector that is “easy” to see. Do you see it?
1 3
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0 0 0 0
Solution. Note that A{ 1 ]:{ 2 }:2{ 1 } Hence, [ 1 } is a 2-eigenvector.
0

0 2 0 0
Just for contrast. Note that A[ 0 ]:{ 2 ]#)\[ 0 ] Hence, [ 0 ] is not an eigenvector.
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