Quiz #5

Please print your name:

Problem 1. Find the eigenvalues of $A = \begin{bmatrix} 4 & 2 & 1 \\ 0 & 3 & 0 \\ 1 & 2 & 4 \end{bmatrix}$ as well as bases for the eigenspaces.

Solution. By expanding by the second row, we find that the characteristic polynomial is

$$\begin{vmatrix} 4-\lambda & 2 & 1 \\ 0 & 3-\lambda & 0 \\ 1 & 2 & 4-\lambda \end{vmatrix} = (3-\lambda) \begin{vmatrix} 4-\lambda & 1 \\ 1 & 4-\lambda \end{vmatrix} = (3-\lambda)[(4-\lambda)^2 - 1] = (3-\lambda)(\lambda - 3)(\lambda - 5).$$

Hence, the eigenvalues are $\lambda = 3$ (with multiplicity 2) and $\lambda = 5$.

- For $\lambda = 5$, the eigenspace null $\begin{pmatrix} -1 & 2 & 1 \\ 0 & -2 & 0 \\ 1 & 2 & -1 \end{pmatrix}$ has basis $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$.
- For $\lambda = 3$, the eigenspace null $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$ has basis $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$.