
Sketch of Lecture 23 Thu, 11/17/2016

Example 133. We model rabbit reproduction as follows.

Each month, every pair of adult rabbits pro-
duces one pair of baby rabbit as o�spring.
Meanwhile, it takes baby rabbits one month
to mature to adults.

adult rabbit baby rabbit
1

1

1

Comment. In this simpli�ed model, rabbits always come in male/female pairs and no rabbits die. Though
these feautures might make it sound completely useless, the model may have some merit when describing
populations under ideal conditions (unlimited resources) and over short time (no deaths).
Historical comment. The question how many rabbits there are after one year, when starting out with a pair
of baby rabbits is famously included in the 1202 textbook of the Italian mathematician Leonardo of Pisa,
known as Fibonacci.

Describe the transition from one month to the next.
Solution. Let xt be the number of adult rabbit pairs after t months. Likewise, yt is the number of baby
rabbit pairs. Then the transition from one month to the next is described by�

xt+1
yt+1

�
=

�
xt+ yt
xy

�
=

�
1 1
1 0

��
xt
yy

�
:

Determine several powers of T =
�
1 1
1 0

�
and interpret the values in each column of Tn.

Solution. T 2=
�
1 1
1 0

��
1 1
1 0

�
=

�
2 1
1 1

�
, T 3=

�
2 1
1 1

��
1 1
1 0

�
=

�
3 2
2 1

�
, T 4=

�
3 2
2 1

��
1 1
1 0

�
=

�
5 3
3 2

�
,

T 5=
�
5 3
3 2

��
1 1
1 0

�
=

�
8 5
5 3

�
, T 6=

�
8 5
5 3

��
1 1
1 0

�
=

�
13 8
8 5

�
The �rst column of Tn equals Tn

�
1
0

�
. Note that

�
1
0

�
is the state of 1 adult rabbit pair and 0 baby rabbits.

Hence, Tn
�
1
0

�
=

�
a
b

�
where a (respectively, b) is the number of adult (respectively, baby) rabbit pairs after

n months. (Check that this matches the values we obtained in the �rst column of T 2; :::; T 6.)

You probably recognize the numbers we are getting: 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; :::
These are Fibonacci numbers! How fast are they growing?

Did you notice that 2
1
=2, 3

2
= 1.5, 5

3
= 1.6, 13

8
= 1.625, 21

13 = 1.615, 34
21 = 1.619, :::

These ratios approach the golden ratio '= 1.618::: Where's that coming from?

� If we write Fn for the n-th Fibonacci number, starting with F0 = 0, F1 = 1, then our previous
observation translates into

�
Fn+1
Fn

�
=

�
1 1
1 0

��
Fn
Fn¡1

�
and, thus,

�
Fn+1
Fn

�
=

�
1 1
1 0

�n� F1
F0

�
.

� The eigenvalues of T =
�
1 1
1 0

�
are �1=

1+ 5
p

2
�1.618 (the golden ratio!) and �2=

1¡ 5
p

2
�¡0.618.

� The corresponding eigenvectors are v1=
�
�1
1

�
, v2=

�
�2
1

�
.

� In terms of the basis of eigenvectors, we have
�
1
0

�
= c1v1+ c2v2 with c1=

1

5
p , c2=¡

1

5
p .

� Hence,
�
Fn+1
Fn

�
=Tn

�
1
0

�
=Tn(c1v1+ c2v2)=�1

nc1v1+�2
nc2v2.

In particular, focusing on the second entry, Fn= �1
nc1+�2

nc2=
1

5
p

��
1+ 5

p

2

�n
¡
�
1¡ 5

p

2

�n�
:

That's Binet's formula.

� For large n, Fn� �1
nc1 (because �2n becomes very small).

In particular, it is very transparent from here that the ratios Fn+1
Fn

approach �1=
1+ 5

p

2
� 1.618.
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Comment. In fact, since �2 is so small, Fn= round
�

1

5
p
�
1+ 5

p

2

�n�
.

Advanced comment. Note that the transition matrix connected to the Fibonacci numbers can be obtained
directly from the recursive relation Fn+1 = Fn + Fn¡1, with which the Fibonacci numbers are usually

introduced. That's because the recursion is equivalent to
�
Fn+1
Fn

�
=

�
1 1
1 0

��
Fn
Fn¡1

�
.

More importantly, we see that, given any such recursion, we can likewise apply our linear algebra skills.

Diagonalization

Example 134. Diagonalize A=
�

0 ¡2
¡4 2

�
.

Solution. We have already looked at eigenvalues and eigenvectors of this matrix in Example 124. Since the
characteristic polynomial is ¡�(2¡�)¡ 8=�2¡ 2�¡ 8, the eigenvalues of A are ¡2; 4.

� A ¡2-eigenvector is
�
1
1

�
, and a 4-eigenvector is

�
1
¡2

�
.

� Note that A
�
1
1

�
=¡2

�
1
1

�
and A

�
1
¡2

�
=4

�
1
¡2

�
can be combined as A

�
1 1
1 ¡2

�
=

�
1 1
1 ¡2

��
¡2 0
0 4

�
.

� In other words, we have AP =PD with P =
�
1 1
1 ¡2

�
(eigenvectors) and D=

�
¡2 0
0 4

�
(eigenvalues).

� AP =PD is equivalent to A=PDP¡1. This is called the diagonalization of A.

Fully spelled out (using
�
1 1
1 ¡2

�¡1
=
1

3

�
2 1
1 ¡1

�
), it takes the form A=

�
1 1
1 ¡2

��
¡2 0
0 4

�
1

3

�
2 1
1 ¡1

�
.

What's the point? Here is one: note that if A=PDP¡1, then A2=(PDP¡1)(PDP¡1)=PD2P¡1.
Likewise, An=PDnP¡1.
But Dn is super easy to compute since

�
¡2 0
0 4

�n
=

�
(¡2)n 0
0 4n

�
. (Continued next time to obtain An.)

The key idea of the previous example was to work with respect to a basis of the eigenvectors.

� Put the eigenvectors x1; :::;xn as columns into a matrix P .

Axi=�ixi =) A

24 j j
x1 ��� xn
j j

35 =

24 j j
�1x1 ��� �nxn
j j

35
=

24 j j
x1 ��� xn
j j

3524 �1
���

�n

35
� In summary: AP =PD

Suppose that A is n�n and has independent eigenvectors v1; :::;vn.

Then A can be diagonalized as A=PDP¡1, where

� the columns of P are the eigenvectors, and

� the diagonal matrix D has the eigenvalues on the diagonal

Such a diagonalization is possible if and only if A has enough eigenvectors.

Example 135. If a matrix A can be diagonalized as A=PDP¡1, what can we say about An?
Solution. First, note that A2=(PDP¡1)(PDP¡1)=PD2P¡1: Likewise, An=PDnP¡1.

The point being that Dn is trivial to compute because D is diagonal.
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