Sketch of Lecture 22 Tue, 11/15/2016

Example 132. Suppose the internet consists of only the four web- e
pages A, B,C, D which link to each other as indicated in the diagram.

Rank these webpages by computing their PageRank vector.
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Solution. Recall that we model a random surfer, who randomly clicks on links. Let a; be the probability that
such a surfer will be on page A at time t. Likewise, by, ¢;, d; are the probabilities that the surfer will be on
page B, C or D.

The transition probabilities are indicated in the diagram to the right. As in
the previous example, we obtain the following transition behaviour:
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To find the equilibrium state, we determine an appropriate 1-eigenvector of the transition matrix 7.
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We conclude that the 1-eigenspace has basis [

2 [ 0.375
The corresponding equilibrium state is 136 3= gzl,ji . This is the PageRank vector.
: 0.188

[For instance, after browsing randomly for a long time, there is (about) a 12.5% chance to be at page B.]
Correspondingly, we rank the pagesas A >C > D > B.

The real internet.
e Google reports (2016) doing “trillions” of searches per year. [2 trillion means 63,000 searches per second.]
e Google's search index contains almost 50 billion pages (2016).  [Estimated to exceed 100,000,000 gigabytes.]

e More than 1,000,000,000 websites (i.e. hostnames; about 75% not active)

[The “average” user apparently only visits about 100 per month; wikipedia.org is one website, consisting of many webpages (more
than 2,000,000).]
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Gory details. There's nothing interesting about the Gaussian elimination above. Here are the full details:
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Practical comment. The transition matrix we would get for the entire internet indexed by Google is prohibit-
ingly large (a 50 billion by 50 billion matrix). While gigantic in size, it is a very sparse matrix, meaning that
almost all of its entries are zero (each column has 50 billion entries but only a handful are nonzero, namely
those corresponding to a link to another webpage). This is typical for many applications in matrix: we often
deal with big but sparse matrices.

Another practical comment. In practical situations, the system might be too large for finding the equilibrium
vector by elimination, as we did above. An alternative to elimination is the power method: it is based on
the idea that the equilibrium vector is what we expect in the long-term. We can approximate this “long-
term” behaviour by simulating a few transitions. For instance, in our example, if we start with the state
[1/4 1/4 1/4 1/4]T, which corresponds to equal chances of being on each webpage, then the next state
(that is, after one random click) is
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Note that the ranking of the webpages is already A, C', D, B if we stop right here.
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The state after that (that is, after two random clicks) is T2 %i 8 ?lj,; and 73 %i = 8;;; .
1/4 0.167 1/4 0.188

7
0.12

0.313
0.188
Iterating like this is guaranteed to converge to a 1-eigenvector under mild technical assumptions on the

transition matrix (for instance, that all its entries be positive; in that case, the other eigenvalues \ satisfy
|A| < 1 so that their contributions go to zero exponentially, as in our example from Lecture 21).
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Observe how we are (overall) approaching the equilibrium vector {
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