
Sketch of Lecture 22 Tue, 11/15/2016

Example 132. Suppose the internet consists of only the four web-
pages A;B;C;D which link to each other as indicated in the diagram.

Rank these webpages by computing their PageRank vector.
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Solution. Recall that we model a random surfer, who randomly clicks on links. Let at be the probability that
such a surfer will be on page A at time t. Likewise, bt, ct, dt are the probabilities that the surfer will be on
page B, C or D.

The transition probabilities are indicated in the diagram to the right. As in
the previous example, we obtain the following transition behaviour:
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To �nd the equilibrium state, we determine an appropriate 1-eigenvector of the transition matrix T .

The 1-eigenspace is null(T ¡ 1 � I) =null
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To compute a basis, we perform Gaussian elimination:
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We conclude that the 1-eigenspace has basis
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The corresponding equilibrium state is 3
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3775. This is the PageRank vector.

[For instance, after browsing randomly for a long time, there is (about) a 12.5% chance to be at page B.]
Correspondingly, we rank the pages as A>C >D>B.

The real internet.

� Google reports (2016) doing �trillions� of searches per year. [2 trillion means 63,000 searches per second.]

� Google's search index contains almost 50 billion pages (2016). [Estimated to exceed 100,000,000 gigabytes.]

� More than 1,000,000,000 websites (i.e. hostnames; about 75% not active)

[The �average� user apparently only visits about 100 per month; wikipedia.org is one website, consisting of many webpages (more
than 2,000,000).]
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Gory details. There's nothing interesting about the Gaussian elimination above. Here are the full details:2666666664
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Practical comment. The transition matrix we would get for the entire internet indexed by Google is prohibit-
ingly large (a 50 billion by 50 billion matrix). While gigantic in size, it is a very sparse matrix, meaning that
almost all of its entries are zero (each column has 50 billion entries but only a handful are nonzero, namely
those corresponding to a link to another webpage). This is typical for many applications in matrix: we often
deal with big but sparse matrices.
Another practical comment. In practical situations, the system might be too large for �nding the equilibrium
vector by elimination, as we did above. An alternative to elimination is the power method: it is based on
the idea that the equilibrium vector is what we expect in the long-term. We can approximate this �long-
term� behaviour by simulating a few transitions. For instance, in our example, if we start with the state
[ 1/4 1/4 1/4 1/4 ]T , which corresponds to equal chances of being on each webpage, then the next state
(that is, after one random click) is

T
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Note that the ranking of the webpages is already A;C;D;B if we stop right here.

The state after that (that is, after two random clicks) is T 2
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Observe how we are (overall) approaching the equilibrium vector
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Iterating like this is guaranteed to converge to a 1-eigenvector under mild technical assumptions on the
transition matrix (for instance, that all its entries be positive; in that case, the other eigenvalues � satisfy
j�j< 1 so that their contributions go to zero exponentially, as in our example from Lecture 21).
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