Sketch of Lecture 19 Thu, 10/27/2016

Review 123.

e Eigenvector equation: Az =\ <= (A—A)z=0

A is an eigenvalue of A <— det(A — AI) =0.

characteristic polynomial

e An n xn matrix A has up to n different eigenvalues \.

o The eigenspace of A is null(A — \I).

It consists of all eigenvectors of A with eigenvalue ).
Since A — Al has determinant 0, null(A — AI) always has dimension at least 1.

o If A has multiplicity m (examples below), then the \-eigenspace has dimension
up to m (and at least 1).

In other words, we find at least 1 eigenvector, and at most m linearly independent eigen-
vectors of eigenvalue .

Comment. “Eigen” is German and means something like “own’ or “particular” or “characteristic’.

Example 124. Find the eigenvalues and eigenvectors of A:{ _04 _22 }

Solution.

e The characteristic polynomial of A is: det(A — \I) = ‘ :i‘ 2__2>\ ‘ =-A2-))—8=X?-2)1-38

2+ VI—E 8 _ 246 (3 9 and Ap—4
2 2 a o

The eigenvalues of A are

e For A\ =—2, the eigenspace null(A — A1) :null([ _24 _42 D has basis [ 1 ]

So: x; :{ 1 } is an eigenvector with eigenvalue A\; = —2.

e For Ay =4, the eigenspace null(A — \o/) = null([ :j :3 D has basis [ _12 }

1

So: :132:{ Ty } is an eigenvector with eigenvalue \o =4.

Make sure to quickly check the answer! (One of the vectors we already saw in an example yesterday.)

Important comment. | The product of the eigenvalues equals the determinant. |

Here, A\;-Ao=—2-4=—8 and, indeed, det(A)=—8.

To see why this is always the case, note that the characteristic polynomial det(A — AI) is of the form
(A1 — A)--(Ap — A). Setting A =0 gives det(A) in the former and the product Aj---A,, of eigenvalues in the
latter.

Comment. Note that we can compute the determinant using Gaussian elimination on A. However, we cannot
compute the eigenvalues using Gaussian elimination on A. (We can do Gaussian elimination on A — A\l but
this is much more work because we have to work with polynomials in A. That's why we will always prefer to
use cofactor expansion to compute the characteristic polynomial.)
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2 00
-1 31
-113

Solution. By expanding by the first row, we find that the characteristic polynomial is

Example 125. Find the eigenvalues of A= as well as bases for the eigenspaces.

2—-X 0 0
-1 3-Xx 1
-1 1 3=

3—X 1

:(2)‘)' 13-

A ‘:(2)0[(3)\)21]:(2)\)()\2)()\4).

Since A =2 is a double root, we say that it has (algebraic) multiplicity 2.
Hence, the eigenvalues are A =2 (with multiplicity 2) and A =4.

[—2 0 o0 0
e For A=4, the eigenspace null -1 -1 1 has basis | 1
| -1 1 -1 1
[0 00 1 1
e For A=2, the eigenspace null -1 11 has basis | 1 [,| O
-1 11 01

2 0
Comment. For instance, { 1 } { -1
1 1

many!). This highlights why we are giving bases for the eigenspaces.

} is another basis for the 2-eigenspace (recall that there is infinitely

Comment. In these simple cases, we can actually read off the two bases. Try to see that! However, recall
that we learned how to compute bases for any null space (see Lecture 14).

0 00
11 1}is[ },andw:[
—1 11

2 00
Example 126. Find the eigenvalues of A=| —1 3 1

-1 03

Solution. By expanding by the first row, we find that the characteristic polynomial is

1 -1 —1
0 O 0
0 O 0

S1+ S2
S1
S2

E.g., for A\=2, the RREF of { } leads to our choice of basis above.

as well as bases for the eigenspaces.

2—X 0 0

1 03-x 1 :(2—)\)’ 36A 3iA ’:(2—)\)(3—)\)2.
—1 0 3—A
Hence, the eigenvalues are A=2 and A\ =3 (with multiplicity 2).
0 00 ] 1]
e For A =2, the eigenspace is null -1 11 , which has basis
| -1 0 1 | L 1]
[ —10 0] [0 ]
e For A\ =3, the eigenspace is null -1 01 , which has basis | 1
-1 00 0

This illustrates that an eigenspace can have dimension less than the multiplicity of the eigenvalue.

Comment. Again, try to be able to see these bases. Alternatively, we can always compute:

E.g., for A= 3, the RREF of {
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1 } and w:[ s1 } leads to our choice of basis above.
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