14 Linear transformations

Throughout, V and W are vector spaces.

Definition 110. A map $T: V \to W$ is a linear transformation if

$$T(c\mathbf{x} + d\mathbf{y}) = cT(\mathbf{x}) + dT(\mathbf{y})$$
 for all \mathbf{x}, \mathbf{y} in V and all c, d in \mathbb{R} .

In other words, a linear transformation respects addition and scaling:

- $\bullet \quad T(\boldsymbol{x} + \boldsymbol{y}) = T(\boldsymbol{x}) + T(\boldsymbol{y})$
- $\bullet \quad T(c\boldsymbol{x}) = cT(\boldsymbol{x})$

It necessarily sends the zero vector in V to the zero vector in W:

•
$$T(0) = 0$$

[because
$$T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0$$
]

Example 111. (for context) The derivative you know from Calculus I is linear.

Indeed, the map D: $\left\{ \begin{array}{l} \mathrm{space\ of\ all} \\ \mathrm{differentiable} \\ \mathrm{functions} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \mathrm{space\ of\ all} \\ \mathrm{functions} \end{array} \right\}$ defined by $f(x) \mapsto f'(x)$ is a linear transformation:

- $\bullet \quad \underbrace{D(f(x) + g(x))}_{(f(x) + g(x))'} = \underbrace{D(f(x))}_{f'(x)} + \underbrace{D(g(x))}_{g'(x)}$
- $\underbrace{D(cf(x))}_{(cf(x))'} = \underbrace{cD(f(x))}_{cf'(x)}$

These are among the first properties you learned about the derivate.

Similarly, the **integral** you love from Calculus II is linear:

$$\int_a^b (f(x) + g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx, \quad \int_a^b c f(x) dx = c \int_a^b f(x) dx$$

In this form, we are looking at a map T: $\left\{ \begin{array}{l} \mathrm{space\ of\ all} \\ \mathrm{continuous} \\ \mathrm{functions} \end{array} \right\} \to \mathbb{R} \ \mathrm{defined\ by}\ T(f(x)) = \int_a^b f(x) \mathrm{d}x.$

Example 112. If A is a $m \times n$ matrix, then T(x) = Ax is a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$.

Why? Matrix multiplication is distributive: A(x+y) = Ax + Ay. (LHS is T(x+y) and RHS is T(x) + T(y).) We also know that A(cx) = cAx for scalars c.

Important advanced comments.

- All linear maps $\mathbb{R}^n \to \mathbb{R}^m$ are given by $\mathbf{x} \mapsto A\mathbf{x}$, for some matrix A.
- The composition of two (compatible) linear maps is another linear map.
- Composition of linear maps corresponds to matrix multiplication! If $T(\mathbf{x}) = A\mathbf{x}$ and $S(\mathbf{x}) = B\mathbf{x}$, then $(T \circ S)(\mathbf{x}) = T(S(\mathbf{x})) = A(B\mathbf{x}) = (AB)\mathbf{x}$. This may look simple here, but recall that the matrix product AB takes some work to introduce!

Let's look at some important geometric examples of linear maps $\mathbb{R}^2 \to \mathbb{R}^2$, which are defined by matrix multiplication, that is, by $\boldsymbol{x} \mapsto A\boldsymbol{x}$.

Example 113.

The matrix $A = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix}$

... gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto c \begin{bmatrix} x \\ y \end{bmatrix}$, i.e.

... stretches every vector in \mathbb{R}^2 by the same factor c.

The matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

... gives the map $\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} y \\ x \end{bmatrix}$, i.e.

... reflects every vector in \mathbb{R}^2 through the line y = x.

Example 115.

The matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

... gives the map $\left[egin{array}{c} x \\ y \end{array} \right] \mapsto \left[egin{array}{c} -y \\ x \end{array} \right]$, i.e.

... rotates every vector in \mathbb{R}^2 counter-clockwise by 90° .

Comment. Note that $A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$, which corresponds to a rotation by 180° . The point to observe is that the matrix multiplication corresponds precisely to the composition of two rotations by 90° .

Advanced comment. We have a matrix solution to the equation $X^2=-I$. The connection to complex numbers is no coincidence! The effect of multiplying a complex number x+iy with i is i(x+iy)=-y+ix, the same effect that our matrix A has. Multiplication by i corresponds to a 90° rotation of numbers in the complex plane.

[In the same way, the matrices $\left[egin{array}{cc} a & -b \\ b & a \end{array} \right]$ model the complex numbers a+ib. Play with it!]

Example 116.

The matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

... gives the map $\left[egin{array}{c} x \\ y \end{array} \right] \mapsto \left[egin{array}{c} x \\ 0 \end{array} \right]$, i.e.

... projects every vector in \mathbb{R}^2 onto the x-axis.

15 Eigenvectors and eigenvalues

Throughout, A will be an $n \times n$ matrix.

Definition 117. If $Ax = \lambda x$ (and $x \neq 0$), then x is an **eigenvector** of A with **eigenvalue** λ (just a number).

Example 118. What are the eigenvectors and eigenvalues of $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$?

Solution. Recall that multiplication with A is projection onto the x-axis. Hence:

- $\bullet \quad A{\left[\begin{array}{c} 1 \\ 0 \end{array}\right]}=1\cdot{\left[\begin{array}{c} 1 \\ 0 \end{array}\right]} \ \leadsto \ \pmb{x}={\left[\begin{array}{c} 1 \\ 0 \end{array}\right]} \ \text{is an eigenvector with eigenvalue} \ \lambda=1.$
- $A\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} \implies \boldsymbol{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 0$.