
Sketch of Lecture 23 Tue, 11/17/2015

Example 137. What’s wrong in the following “calculation”?!

det (A−1)=det

(

1

ad− bc

[

d −b

−c a

])

=
1

ad− bc
(da− (−b)(−c)) = 1

Solution. The corrected calculation is: det
(

1

ad− bc

[

d −b

−c a

]
)

=
1

(ad− bc)2
(da− (−b)(−c))=

1

ad− bc

Note. It is always true that det (A−1) =
1

det (A)
.

Remark. If you are still confused about the above mistake: note that det
(

2
[

1 0
0 1

]
)

=4 (not 2).

Example 138. Suppose A is a 3× 3 matrix with det (A)=−2. What is det (10A)?

Solution. det (10A) = 103 · (−2)=−2000 (because A has 3 rows, each of which gets multiplied with 10).

The following important properties follow from the behaviour under row operations.

• det (A)= 0 � A is not invertible

Why? Because det(A)=0 if only if, in an echelon form, a diagonal entry is zero (that is, a pivot is missing).

• det (AB)= det (A)det(B)

• det (A−1)=
1

det (A)

• det (AT)= det (A)

Example 139. Let A be an n×n matrix with det (A)= d. Simplify det (A3) and det (3A).

Solution. det (A3)= det (A ·A ·A)=det (A)det(A)det(A)= d3 and det (3A) = 3n d.

A “bad” way to compute determinants

Example 140. Compute

∣

∣

∣

∣

∣

∣

1 2 0
3 −1 2
2 0 1

∣
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by cofactor expansion.

Solution. We expand by the first row:
∣

∣

∣

∣

∣

∣

1 2 0
3 −1 2
2 0 1
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∣

∣

∣

∣
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=1 ·
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∣
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∣

∣

+
−1 2
0 1
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− 2 ·
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∣

−

3 2
2 1

∣

∣

∣
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∣

+0 ·
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∣
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+
3 −1
2 0
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i.e.
1 ·

∣

∣

∣

∣

−1 2
0 1

∣

∣

∣

∣

− 2 ·
∣

∣

∣

∣

3 2
2 1

∣

∣

∣

∣

+0 ·
∣

∣

∣

∣

3 −1
2 0

∣

∣

∣

∣

=1 · (−1)− 2 · (−1)+ 0=1

Each term in the cofactor expansion is ±1 times an entry times a smaller determinant (row
and column of entry deleted).

The ±1 is assigned to each entry according to
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Solution. We expand by the second column:
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1 2 0
3 −1 2
2 0 1
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=−2 ·
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∣
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−

3 2
2 1
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∣
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+ (−1) ·
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∣

1 0
+

2 1
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− 0 ·
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1 0
3 2

−
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∣
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= − 2 · (−1)+ (−1) · 1− 0=1
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Why is the method of cofactor expansion not practical?

Because to compute a large n×n determinant,

• one reduces to n determinants of size (n− 1)× (n− 1),

• then n (n− 1) determinants of size (n− 2)× (n− 2),

• and so on.

In the end, we have n! =n(n− 1)� 3 · 2 · 1 many numbers to add.

WAY TOO MUCH WORK! Already 25! = 15511210043330985984000000≈ 1.55 · 1025.

Context: today’s fastest computer, Tianhe-2, runs at 34 petaflops (3.4 · 1016 op’s per second).

By the way: “fastest” is measured by doing Gaussian elimination!

Linear transformations

Throughout, V and W are vector spaces.

Definition 141. A map T :V →W is a linear transformation if

T (cx+ dy)= cT (x)+ dT (y) for all x, y in V and all c, d in R.

In other words, a linear transformation respects addition and scaling:

• T (x+ y)=T (x) +T (y)

• T (cx)= cT (x)

It also sends the zero vector in V to the zero vector in W :

• T (0)=0 [because T (0) =T (0 ·0)= 0 ·T (0)=0]

Example 142. Let A be an m×n matrix.

Then the map T (x)=Ax is a linear transformation T :Rn→Rm.

Why?

Because matrix multiplication is linear:

A(cx+ dy)= cAx+ dAy

The LHS is T (cx+ dy) and the RHS is cT (x)+ dT (y).

Important geometric examples

We consider some linear maps R
2 →R

2, which are defined by matrix multiplication, that is,
by x� Ax.

In fact: all linear maps R
n→R

m are given by x� Ax, for some matrix A.

Example 143.

The matrix A=

[

c 0
0 c

]


 gives the map
[

x

y

]

� c
[

x

y

]

, i.e.


 stretches every vector in R
2 by the same factor c.

Example 144.

The matrix A=

[

0 1
1 0

]


 gives the map
[

x

y

]

�

[

y

x

]

, i.e.


 reflects every vector in R
2 through the line y= x.
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