Sketch of Lecture 18 Thu, 10/22/2015

Review 117. Let A be a matrix and B an echelon form of A.
(a) The columns of A corresponding to the pivot columns of B form a basis for col(A).
(b) The nonzero rows of B form a basis for row(A).

(c) In particular, the dimensions of col(A) and row(A) are both equal to the number of pivots.

1
Example 118. Let A=| 2 |. Find a basis for col(A) and row(A).
3

1
Solution. Clearly, a basis for col(A) is { 2 ] The dimension is 1.
3

Again, clearly, a basis for row(A) =span{[ 1],[2],[ 3]} is [ 1 ]. The dimension is also 1.
[Recall that the last part of Theorem [116 tells us that the dimensions of col(A) and row(A) always agree.]
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Example 119. Find a basis for col(A) with A=
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Note that we have two choices because we can

e use Theorem 116 (a) directly, or

e use Theorem 116 (b) and col(A) =row(AT).

The first option will produce a basis from a subset of the original columns, while the second
option will introduce new vectors (with some zeros). The amount of computation is the same.

1 —1 |Re—Ri=R2| 1 1 —1 ) —1
9 Rz*&sz 01 R3— 5331%3 9 ’
3 0 2 0

1 2
3 4
. . 1 1
a basis for col(A) is | 1 |,| 2 |.
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[Recall that bases are not at all unique. For instance, now that we know that col(A) is 2-dimensional, we see that any pair of
its columns would form a basis (because every pair of columns is linearly independent).]
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Solution. Since
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Solution. Note that col(A) = row({
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a basis for col(A) is { 1 },
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[Note that, in this case, we get a basis that is not taken from the columns of A. Here, we can still see how it is related to the

basis we obtained earlier: [ ; ] :[ 1 ] +[ (1] ]]
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Bases for null spaces

To find a basis for null(A):

e find the parametric form of the solutions to Az =0,
e express solutions x as a linear combination of vectors with the free variables as coefficients;
[

these vectors form a basis of null(A).

In particular, the dimension of null(A) equals the number of free variables.

Example 120. Find a basis for null(A) with A:[ ; i g (1) :13 }

Solution. We eliminate!
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To =81, T4 = S2 and x5 = s3 are our free variables. The solutions to Ax =0 are:
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= 259+ 5s3 =s1| O + 59| 2 + 83 5
S92 0 1 0
53 0 0 1

Hence, null(A) = span [

These vectors are clearly independent.

If you don't see it, do compute an echelon form! (permute first and third row to the bottom)
Better yet: note that the first vector corresponds to the solution with s; = 1 and the other free variables s = 0, s3 = 0. The

second vector corresponds to the solution with s; =1 and the other free variables s; =0, s3=0. The third vector

RIS

0
Hence, [ 0 |,[ 2 |,[ 5 | is a basis for null(A).
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