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Similar computations give us

A11 B12 + A12 B22 =





33

−4

−30



 , A11 B13 + A12 B23 =





7

4

9



 ,

A21 B11 + A22 B21 =
[

31
]

, A21 B12 + A22 B22 =
[

11
]

, A21 B13 + A22 B23 =
[

24
]

Finally, we pull everything together to arrive at

AB =









11 33 7

1 −4 4

22 −30 9

31 11 24









■

EXERCISES

In Exercises 1–6, perform the indicated computations when

possible, using the matrices given below. If a computation is not

possible, explain why.

A =

[

−3 1

2 −1

]

, B =

[

0 4

−2 5

]

, C =

[

5 0

−1 4

3 3

]

D =

[

1 0 −3

−2 5 −1

]

, E =

[

1 4 −5

−2 1 −3

0 2 6

]

1. (a) A + B , (b) AB + I2, (c) A + C

2. (a) AC , (b) C + DT , (c) C B + I2

3. (a) (AB)T , (b) C E , (c) (A − B)D

4. (a) A3, (b) BC T , (c) E C + I3

5. (a) (C + E )B , (b) B(C T + D), (c) E + C D

6. (a) AD − C T , (b) AB − DC , (c) D E + C B

In Exercises 7–10, find the missing values in the given matrix

equation.

7.

[

2 a

3 −2

][

b −3

−1 2

]

=

[

3 −8

5 c

]

8.

[

1 4

a 7

][

2 −1

b 3

]

=

[

6 d

11 c

]

9.

[

a 3 −2

3 −2 4

]

[

2 −1

0 b

c 1

]

=

[

4 d

−6 −5

]

10.

[

1 a

0 −2

5 b

]

[

3 c d

−2 1 2

]

=

[

−3 3 7

e −2 −4

f −2 1

]

11. Find all values of a such that A2 = A for

A =

[

5 −10

a −4

]

12. Find all values of a such that A3 = 2A for

A =

[

−2 2

−1 a

]

13. Let T1 and T2 be linear transformations given by

T1

([

x1

x2

])

=

[

3x1 + 5x2

−2x1 + 7x2

]

T2

([

x1

x2

])

=

[

−2x1 + 9x2

5x2

]

Find the matrix A such that

(a) T1(T2(x)) = Ax

(b) T2(T1(x)) = Ax

(c) T1(T1(x)) = Ax

(d) T2(T2(x)) = Ax

14. Let T1 and T2 be linear transformations given by

T1

([

x1

x2

])

=

[

−2x1 + 3x2

x1 + 6x2

]

T2

([

x1

x2

])

=

[

4x1 − 5x2

x1 + 5x2

]

Find the matrix A such that

(a) T1(T2(x)) = Ax

(b) T2(T1(x)) = Ax

(c) T1(T1(x)) = Ax

(d) T2(T2(x)) = Ax

In Exercises 15–18, expand each of the given matrix expressions

and combine as many terms as possible. Assume that all matrices

are n × n.

15. (A + I )(A − I )

16. (A + I )(A2 + A)

17. (A + B2)(B A − A)

18. A(A + B) + B(B − A)

In Exercises 19–22, the given matrix equation is not true in general.

Explain why. Assume that all matrices are n × n.

19. (A + B)2 = A2 + 2AB + B2
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20. (A − B)2 = A2 − 2AB + B2

21. A2 − B2 = (A − B)(A + B)

22. A3 + B3 = (A + B)(A2 − AB + B2)

23. Suppose that A has four rows and B has five columns. If AB

is defined, what are its dimensions?

24. Suppose that A has four rows and B has five columns. If B A

is defined, what are its dimensions?

In Exercises 25–28,

A =







1 −2 −1 3

−2 0 1 4

−1 2 −2 0

0 1 2 1







, B =







2 0 −1 1

−3 1 2 1

0 −1 −2 3

2 2 −1 −2







25. Partition A and B into four 2 × 2 blocks, and then use them

to compute each of the following:

(a) A − B

(b) AB

(c) B A

26. Partition A and B into four blocks, with the upper left of each a

3×3 matrix , and then use them to compute each of the following:

(a) A + B

(b) AB

(c) B A

27. Partition A and B into four blocks, with the lower left of each a

3×3 matrix, and then use them to compute each of the following:

(a) B − A

(b) AB

(c) B A + A

28. Partition A and B into four blocks, with the lower right of

each a 3 × 3 matrix, and then use them to compute each of the

following:

(a) A + B

(b) AB

(c) B A

29. Suppose that A is a 3 × 3 matrix. Find a 3 × 3 matrix E such

that the product E A is equal to A with

(a) the first and second rows interchanged.

(b) the first and third rows interchanged.

(c) the second row multiplied by −2.

30. Suppose that A is a 4 × 3 matrix. Find a 4 × 4 matrix E such

that the product E A is equal to A with

(a) the first and fourth rows interchanged.

(b) the second and third rows interchanged.

(c) the third row multiplied by −2.

FIND AN EXAMPLE For Exercises 31–38, find an example that

meets the given specifications.

31. 3 × 3 matrices A and B such that AB �= B A.

32. 3 × 3 matrices A and B such that AB = B A.

33. 2×2 nonzero matrices A and B (other than those given earlier)

such that AB = 022.

34. 3 × 3 nonzero matrices A and B such that AB = 033.

35. 2 × 2 matrices A and B (other than those given earlier) that

have no zero entries and yet AB = 022.

36. 3 × 3 matrices A and B that have no zero entries and yet

AB = 033.

37. 2 × 2 matrices A, B , and C (other than those given earlier)

that are nonzero, where A �= B but AC = BC .

38. 3 × 3 matrices A, B , and C that are nonzero, where A �= B

but AC = BC .

TRUEORFALSE For Exercises 39–48, determine if the statement

is true or false, and justify your answer. You may assume that A,

B , and C are n × n matrices.

39. If A and B are nonzero (that is, not equal to 0nn), then so is

A + B .

40. If A and B are diagonal matrices, then so is A − B .

41. If A is upper triangular, then AT is lower triangular.

42. AB �= B A

43. C + In = C

44. If A is symmetric, then so is A + In .

45. (ABC)T = C T B T AT

46. If AB = B A, then either A = In or B = In .

47. (AB + C )T = C T + B T AT

48. (AB)2 = A2 B2

49. Prove the remaining unproven parts of Theorem 3.11.

(a) A + B = B + A

(b) s (A + B) = s A + s B

(c) (s + t)A = s A + t A

(d) (A + B) + C = A + (B + C)

(f) A + 0nm = A

50. Prove the remaining unproven parts of Theorem 3.13.

(a) A(BC ) = (AB)C

(b) A(B + C ) = AB + AC

(d) s (AB) = (s A)B = A(s B)

(f) I A = A

51. Prove the remaining unproven parts of Theorem 3.15.

(a) (A + B)T = AT + B T

(b) (s A)T = s AT

52. Verify Equation (2): If A is an n ×m matrix and In is the n ×n

identity matrix, then A = In A.

53. Show that if A and B are symmetric matrices and AB = B A,

then AB is also a symmetric matrix.
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54. Let A and D be n × n matrices, and suppose that the only

nonzero terms of D are along the diagonal. Must AD = D A? If

so, prove it. If not, give a counter-example.

55. Let A be an n × m matrix.

(a) What are the dimensions of AT A?

(b) Show that AT A is symmetric.

56. Suppose that A and B are both n ×n diagonal matrices. Prove

that AB is also an n × n diagonal matrix. (HINT: The formula

given in (1) can be helpful here.)

57. Suppose that A and B are both n × n upper triangular matri-

ces. Prove that AB is also an n×n upper triangular matrix. (HINT:

The formula given in (1) can be helpful here.)

58. Suppose that A and B are both n×n lower triangular matrices.

Prove that AB is also an n × n lower triangular matrix. (HINT:

The formula given in (1) can be helpful here.)

59. Prove Theorem 3.17: If A is an upper (lower) triangular matrix

and k ≥ 1 is an integer, then Ak is also an upper (lower) triangular

matrix.

60. If A is a square matrix, show that A + AT is symmetric.

61. A square matrix A is skew symmetric if AT = −A.

(a) Find a 3 × 3 skew symmetric matrix.

(b) Show that the same numbers must be on the diagonal of all

skew symmetric matrices.

62. A square matrix A is idempotent if A2 = A.

(a) Find a 2 × 2 matrix, not equal to 022 or I , that is idempotent.

(b) Show that if A is idempotent, then so is I − A.

63. If A is a square matrix, show that (AT )T = A.

64. The trace of a square matrix A is the sum of the diagonal terms

of A and is denoted by tr(A).

(a) Find a 3×3 matrix A with nonzero entries such that tr(A) = 0.

(b) If A and B are both n × n matrices, show that tr(A + B) =

tr(A) + tr(A).

(c) Show that tr(A) = tr(AT ).

(d) Select two nonzero 2 × 2 matrices A and B of your choosing,

and check if tr(AB) = tr(A)tr(B).

65. C In Example 7, suppose that the current distribution is 8000

homes with cable, 1500 homes with satellite, and 500 homes with

no TV. Find the distribution one year, two years, three years, and

four years from now.

66. C In Example 7, suppose that the current distribution is 5000

homes with cable, 3000 homes with satellite, and 2000 homes with

no TV. Find the distribution one year, two years, three years, and

four years from now.

67. C In an office complex of 1000 employees, on any given day

some are at work and the rest are absent. It is known that if an

employee is at work today, there is an 85% chance that she will be

at work tomorrow, and if the employee is absent today, there is a

60% chance that she will be absent tomorrow. Suppose that today

there are 760 employees at work. Predict the number that will be

at work tomorrow, the following day, and the day after that.

68. C The star quarterback of a university football team has de-

cided to return for one more season. He tells one person, who in

turn tells someone else, and so on, with each person talking to

someone who has not heard the news. At each step in this chain,

if the message heard is “yes” (he is returning) then there is a 10%

chance it will be changed to “no,” and if the message heard is “no,”

then there is a 15% chance that it will be changed to “yes.” Deter-

mine the probability that the fourth person in the chain hears the

correct news.

C In Exercises 69–74, perform the indicated computations when

possible, using the matrices given below. If a computation is not

possible, explain why.

A =







2 −1 0 4

0 3 3 −1

6 8 1 1

5 −3 1 −2







, B =







−6 2 −3 1

−5 2 0 3

0 3 −1 4

8 5 −2 0







C =







2 0 1 1 1

5 1 2 4 3

6 2 4 0 8

7 3 3 3 2







, D =











5 2 0 0

2 5 1 3

0 7 1 4

3 6 9 2

1 4 7 1











69. (a) A + B , (b) B A − I4, (c) D + C

70. (a) AC , (b) C T − DT , (c) C B + I2

71. (a) AB , (b) C D, (c) (A − B)C T

72. (a) B4, (b) BC T , (c) D + I4

73. (a) (C + A)B , (b) C (C T + D), (c) A + C D

74. (a) AB − DT , (b) AB − DC , (c) D + C B

3.3 Inverses

In Section 3.1, we defined the linear transformation and developed the properties of

this type of function. In this section we consider the problem of “reversing” a linear

transformation. An application of this can be found in encoding messages so that they

cannot be read by anyone besides the intended recipient. The history of secret codes is

long, going back at least as far as Julius Caesar. Here we give a brief description of an

encoding method that uses linear transformations.


