
Preparation problems for the discussion sections on October 28th and 30th

1. Let u1 =

1
2
0

, u2 =

 2
−1
2

. Let v =

 1
−2
1

. Can you find real numbers c1, c2 such that

v = c1u1 + c2u2?

Solution: Since u1 and u2 are orthogonal (i.e. u1 · u2 = 0), we have that if

v = c1u1 + c2u2

for some real number c1, c2, then

v · u1 = c1u1 · u1 + c2u2 · u1 = c1u1 · u1

and

v · u2 = c1u1 · u2 + c2u2 · u2 = c2u2 · u2.

Hence

c1 =
v · u1

u1 · u1

=

 1
−2
1

 ·
1

2
0


1

2
0

 ·
1

2
0

 = −3

5

and

c2 =
v · u2

u2 · u2

=

 1
−2
1

 ·
 2
−1
2


 2
−1
2

 ·
 2
−1
2

 =
6

9
=

2

3
.

However, we see that −3
5
u1 + 2

3
u2 6= v, so it is not possible to find real numbers c1, c2 such

that v = c1u1 + c2u2.
The numbers that we found, however, are “best possible” in the sense that the two sides are

as close as possible. In other words, −3
5
u1 + 2

3
u2 is the orthogonal projection of v onto the

space spanned by u1 and u2.
[Note that you can solve this problem in many other ways. The way above serves to make

us more familiar with notions such as orthogonal projections.]

2. Let W = Span{v}, where v =

1
1
1

, be a subspace of R3. Find the projections aW , bW , cW

of the vectors

a =

1
2
3

 , b =

 2
−1
−1

 , c =

2
2
2


onto the subspace W . Interpret your results geometrically.
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Solution: We have,

aW =
a · v
v · v

v =

1
2
3

 ·
1

1
1


1

1
1

 ·
1

1
1


1

1
1

 =
6

3

1
1
1

 =

2
2
2

 ,

bW =
b · v
v · v

v =

 2
−1
−1

 ·
1

1
1


1

1
1

 ·
1

1
1


1

1
1

 =
0

3

1
1
1

 =

0
0
0

 ,

cW =
c · v
v · v

v =

2
2
2

 ·
1

1
1


1

1
1

 ·
1

1
1


1

1
1

 =
6

3

1
1
1

 =

2
2
2

 .

The fact that bW is zero means that b is orthogonal to W . In this, and the other two cases,
we obtain the vector in W which is closest to the vector that we start with.

3. Let W = Span{


1
1
1
1

 ,


1
−1
0
0

} be a subspace of R4.

(i) Find the closest point to


1
0
1
0

 on the subspace W .

(ii) Find the projection matrix, P , corresponding to the projection onto W .

(iii) Use the projection matrix, P , to find the projection of


1
0
1
0

 onto the subspace W .

Solution:

(i) The closest point is the orthogonal projection:
1
0
1
0

 ·


1
1
1
1




1
1
1
1

 ·


1
1
1
1




1
1
1
1

+


1
0
1
0

 ·


1
−1
0
0




1
−1
0
0

 ·


1
−1
0
0




1
−1
0
0

 =
2

4


1
1
1
1

+
1

2


1
−1
0
0

 =


1
0
1
2
1
2


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(ii) The projections of the four standard basis vectors are


1
0
0
0


W

=


1
0
0
0

 ·


1
1
1
1




1
1
1
1

 ·


1
1
1
1




1
1
1
1

+


1
0
0
0

 ·


1
−1
0
0




1
−1
0
0

 ·


1
−1
0
0




1
−1
0
0

 =
1

4


1
1
1
1

+
1

2


1
−1
0
0

 =


3
4
−1

4
1
4
1
4

 ,


0
1
0
0


W

=


0
1
0
0

 ·


1
1
1
1




1
1
1
1

 ·


1
1
1
1




1
1
1
1

+


0
1
0
0

 ·


1
−1
0
0




1
−1
0
0

 ·


1
−1
0
0




1
−1
0
0

 =
1

4


1
1
1
1

+
−1

2


1
−1
0
0

 =


−1

4
3
4
1
4
1
4

 ,


0
0
1
0


W

=


0
0
1
0

 ·


1
1
1
1




1
1
1
1

 ·


1
1
1
1




1
1
1
1

+


0
0
1
0

 ·


1
−1
0
0




1
−1
0
0

 ·


1
−1
0
0




1
−1
0
0

 =
1

4


1
1
1
1

+ 0


1
−1
0
0

 =


1
4
1
4
1
4
1
4

 ,


0
0
0
1


W

=


0
0
0
1

 ·


1
1
1
1




1
1
1
1

 ·


1
1
1
1




1
1
1
1

+


0
0
0
1

 ·


1
−1
0
0




1
−1
0
0

 ·


1
−1
0
0




1
−1
0
0

 =
1

4


1
1
1
1

+ 0


1
−1
0
0

 =


1
4
1
4
1
4
1
4

 .

Hence, the projection matrix is:

P =


3
4
−1

4
1
4

1
4

−1
4

3
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4


(iii) Using P , we find that the orthogonal projection is

1
0
1
0


W

=


3
4
−1

4
1
4

1
4

−1
4

3
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4




1
0
1
0

 =


1
0
1
2
1
2


3



4. Let W = Span{

1
1
1

 ,

 1
−1
0

} and V = Span{

1
1
1

 ,

 1
1
−2

} be subspaces of R3.

(i) Find the projection matrices, P and Q, corresponding to the projections onto W and
V , respectively.

(ii) Check that PQ = QP . Can you interpret PQ as a projection matrix?

Solution:

(i) The projections onto W of the three standard basis vectors are

1
0
0


W

=

1
0
0

 ·
1

1
1


1

1
1

 ·
1

1
1


1

1
1

+

1
0
0

 ·
 1
−1
0


 1
−1
0

 ·
 1
−1
0


 1
−1
0

 =
1

3

1
1
1

+
1

2

 1
−1
0

 =

 5
6
−1

6
1
3

 ,

0
1
0


W

=

0
1
0

 ·
1

1
1


1

1
1

 ·
1

1
1


1

1
1

+

0
1
0

 ·
 1
−1
0


 1
−1
0

 ·
 1
−1
0


 1
−1
0

 =
1

3

1
1
1

− 1

2

 1
−1
0

 =

−1
6

5
6
1
3

 ,

0
0
1


W

=

0
0
1

 ·
1

1
1


1

1
1

 ·
1

1
1


1

1
1

+

0
0
1

 ·
 1
−1
0


 1
−1
0

 ·
 1
−1
0


 1
−1
0

 =
1

3

1
1
1

+ 0

 1
−1
0

 =

1
3
1
3
1
3

 .

Hence, the projection matrix corresponding to the orthogonal projection onto W is:

P =

 5
6
−1

6
1
3

−1
6

5
6

1
3

1
3

1
3

1
3


On the other hand, the projections onto V of the three standard basis vectors are

1
0
0


V

=

1
0
0

 ·
1

1
1


1

1
1

 ·
1

1
1


1

1
1

+

1
0
0

 ·
 1

1
−2


 1

1
−2

 ·
 1

1
−2


 1

1
−2

 =
1

3

1
1
1

+
1

6

 1
1
−2

 =

1
2
1
2
0

 ,
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0
1
0


V

=

0
1
0

 ·
1

1
1


1

1
1

 ·
1

1
1


1

1
1

+

0
1
0

 ·
 1

1
−2


 1

1
−2

 ·
 1

1
−2


 1

1
−2

 =
1

3

1
1
1

+
1

6

 1
1
−2

 =

1
2
1
2
0

 ,

0
0
1


V

=

0
0
1

 ·
1

1
1


1

1
1

 ·
1

1
1


1

1
1

+

0
0
1

 ·
 1

1
−2


 1

1
−2

 ·
 1

1
−2


 1

1
−2

 =
1

3

1
1
1

− 1

3

 1
1
−2

 =

0
0
1

 .

Hence, the projection matrix corresponding to the orthogonal projection onto V is:

P =

1
2

1
2

0
1
2

1
2

0
0 0 1


(ii) PQ = QP is the matrix corresponding to the orthogonal projection onto the intersection

of W and V (the space of all vectors in both W and V ), that is W ∩ V = span{

1
1
1

}.
[Note: since

 1
−1
0

 ·
 1

1
−2

 = 0 if you compute orthogonal projection onto W and

then onto V the answer will be same as computing orthogonal projection onto V and
then onto W ]

5. Let A =

1 −1
1 1
0 0

 and b =

4
5
6

.

a. Does b belong to the column space of A? Can you solve Ax = b?
b. What do you expect the projection of b onto W = Col(A) to be?

c. Find the projection b̂ of b onto Col(A), and then solve Ax̂ = b̂. (The vector x̂ is called
the least square solution of Ax = b.)

d. Solve the equation ATAx̂ = ATb. Compare with your result of the previous part! (This
equation is called the normal equation of Ax = b.)

e. Answer these questions for A as above but with b =

1
1
0

 (and then b =

0
0
4

).

Solution: a. No, b does not belong to the column space of A, because it is not a linear

combination of

1
1
0

 and

−1
1
0

. Hence there is no solution to Ax = b.

b. W is the span of

1
1
0

 and

−1
1
0

. It can easily be seen that W is the set of vectors in R3

5



whose third entry is 0. Hence

4
5
0

 is in W . Note

0
0
6

 = b−

4
5
0


is orthogonal to W . Hence

4
5
0

 should be the orthogonal projection of b onto W .

[Note that the columns of A are an orthogonal basis for W . Hence, we actually know how
to compute the orthogonal projection of b onto W . The result will be as above, and the
computation is given in Step 1 below.]

c. Step 1: Find the orthogonal projection of b onto W .

b̂ =

4
5
6

 ·
1

1
0


1

1
0

 ·
1

1
0


1

1
0

+

4
5
6

 ·
−1

1
0


−1

1
0

 ·
−1

1
0


−1

1
0

 = 4.5

1
1
0

+ .5

−1
1
0

 =

4
5
0

 .

Step 2: Solve Ax̂ = b̂.

 1 −1 4
1 1 5
0 0 0

 R2→R2−R1−−−−−−−→

 1 −1 4
0 2 1
0 0 0

 R1→R1+.5R2−−−−−−−−→

 1 0 4.5
0 2 1
0 0 0

 .

Hence,

x̂ =

[
4.5
.5

]
.

[Note that this was unnecessary! When projecting b onto W , we already expressed the result
as a linear combination of the columns of A.]

d. We first calculate ATA and ATb:

ATA =

[
1 1 0
−1 1 0

]1 −1
1 1
0 0

 =

[
2 0
0 2

]
,

ATb =

[
1 1 0
−1 1 0

]4
5
6

 =

[
9
1

]
.

Now we have to solve [
2 0
0 2

]
x̂ =

[
9
1

]
.

Clearly, then

x̂ =

[
4.5
.5

]
.
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e. I leave the details to you, but here are the solutions. For b =

1
1
0

:

b̂ =

1
1
0

 , x̂ =

[
1
0

]
Note that in this case b̂ = b and x̂ is a solution (not just a least squares solution) of Ax = b.

For b =

0
0
4

:

b̂ =

0
0
0

 , x̂ =

[
0
0

]
This was to be expected because b is orthogonal to the columns of A.
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