
Preparation problems for the discussion sections on October 14th and 16th

1. Let v =

[
1
1

]
. Find the length of v. Find a vector u in the direction of v that has length 1 .

Find a vector w that is orthogonal to v.

Solution: The length of v is
√

12 + 12 =
√

2. Since u = av, we have to find a so that length
of u is 1. So: √

a2 + a2 = 1

Thus, a = 1√
2

and we have:

u =
1√
2

[
1
1

]
.

For a vector y orthogonal to v, we need to find

[
y1
y2

]
such that

0 =

[
1
1

]
·
[
y1
y2

]
= y1 + y2

One pair y1, y2 that satisfies the equation is 1,−1. So the vector

[
1
−1

]
is orthogonal to v.

2. Let u1 = 1√
2

[
1
1

]
, u2 = 1√

2

[
1
−1

]
, and v =

[
2
3

]
. Find real numbers c1, c2 such that

v = c1u1 + c2u2.

Solution: Since u1 and u2 are orthogonal (i.e. u1 · u2 = 0), we have that if

v = c1u1 + c2u2.

for some real number c1, c2, then

u1 · v = c1u1 · u1 + c2u1 · u2 = c1u1 · u1

and
u2 · v = c1u2 · u1 + c2u2 · u2 = c2u2 · u2.

Hence

c1 =
u1 · v
u1 · u1

=

[
2
3

]
· 1√

2

[
1
1

]
1√
2

[
1
1

]
· 1√

2

[
1
1

] =
5√
2
.

and

c2 =
u2 · v
u2 · u2

=

[
2
3

]
· 1√

2

[
1
−1

]
1√
2

[
1
−1

]
· 1√

2

[
1
−1

] =
−1√

2
.

(Note: you can also solve the system

x1u1 + x2u2 = v,

to find the same answer. But observe that the above approach becomes much simpler if you
are working with n orthogonal vectors in Rn.)
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3. Let V = {


a
b
c
d

 : a + b + c + d = 0} be a subspace of R4.

(a) Find a basis for V .
(b) Find a vector that is orthogonal to V .
(c) Can you find two linearly independent vectors that are orthogonal to V ?

Solution:

(a) We have:

V =



a
b
c
d

 : a = −b− c− d

 =



−b− c− d

b
c
d

 : b, c, d ∈ R

 = Span



−1
1
0
0

 ,


−1
0
1
0

 ,


−1
0
0
1




So



−1
1
0
0

 ,


−1
0
1
0

 ,


−1
0
0
1


 is a basis for V . (If you ignore the first entry, it is easy to

see that these vectors are linearly independent)
(Alternatively: note that, by definition, V = Nul([1, 1, 1, 1]). And for any null space,

we know how to find a basis.)
(b) Let

A =


−1 −1 −1
1 0 0
0 1 0
0 0 1


Then, V = Col(A) and the orthogonal complement of V is Nul(AT ). We have:

AT =

−1 1 0 0
−1 0 1 0
−1 0 0 1

 R2→R2−R1,R3→R3−R1−−−−−−−−−−−−−−→

−1 1 0 0
0 −1 1 0
0 0 −1 1

 R2→R2+R3,R1→R1+R2−−−−−−−−−−−−−−→

−1 0 0 1
0 −1 0 1
0 0 −1 1


Thus,

Nul(AT ) =



a
b
c
d

 : a = b = c = d

 = Span




1
1
1
1




In particular, the dimension of orthogonal complement of V is 1 and


1
1
1
1

 is orthogonal

to V .
(This was too much work! (But a good illustration that there is many paths to Rome.)

Note again that, by definition, V = Nul([1, 1, 1, 1]). Hence, the orthogonal complement
is Col([1, 1, 1, 1]T ), and we immediately find the vector [1, 1, 1, 1]T as orthogonal to V .)

(Further note that V is actually defined, right away, as those vectors that are or-
thogonal to [1, 1, 1, 1]T . Make sure that you can see that by writing out the inner
product!)
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(c) No, as we showed in part (b), the dimension of the orthogonal complement of V is 1 so
we cannot find two linearly independent vectors in the orthogonal complement of V .

Note: a vector v is orthogonal to V if and only of v is in the orthogonal complement
of V .

4. Let A =

1 2 1
4 8 2
1 2 5

.

(a) Find an echelon form U of A. What are the column spaces Col(A), Col(U)? Are they
equal?

(b) Find a basis for Col(U) and a basis for Col(A).
(c) What are the row spaces Col(AT ), and Col(UT ). Are they equal?
(d) Find a basis for the row space of A, Col(AT ).

(a) We have:1 2 1
4 8 2
1 2 5

 R2→R2−4R1,R3→R3−R1−−−−−−−−−−−−−−−→

1 2 1
0 0 −2
0 0 4

 R3→R3+2R2−−−−−−−→

1 2 1
0 0 −2
0 0 0


Col(A)=Span


1

4
1

 ,

2
8
2

 ,

1
2
5

 and Col(U)=Span


1

0
0

 ,

2
0
0

 ,

 1
−2
0

. They are

not equal since the third entry of any vector in Col(U) is equal to 0 and in particular,
the first column of A is not in Col(U).

This illustrates the fact that the column space is not preserved by row operations!
(b) Since the first column and the third column are pivot columns, a basis for Col(A) is

1
4
1

 ,

1
2
5

; and a basis for Col(U) is


1

0
0

 ,

 1
−2
0

.

(c) Col(AT ) and Col(UT ) are equal since each row of U is a linear combination of rows of
A and vice versa. We have:

Col(AT ) = Col(UT ) = Span


1

2
1

 ,

 0
0
−2


The row space, on the other hand, is preserved by row operations!

(d) Non-zero rows of U form a basis for Col(AT ). Hence,


1

2
1

 ,

 0
0
−2

 is a basis for

Col(AT ).

5. Let B =

[
1 1 0 1
1 0 0 1

]
.

(a) Find a basis for Nul(B).
(b) Find two linear independent vectors that are orthogonal to Nul(B).
(c) Is there a non-zero vector in R2 orthogonal to Col(B)?
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Solution: a) We bring B to reduced echelon form:[
1 1 0 1
1 0 0 1

]
R2↔R1−−−−→

[
1 0 0 1
1 1 0 1

]
R2↔R2−R1−−−−−−−→

[
1 0 0 1
0 1 0 0

]
.

Hence, vectors in Nul(B) are of the form
x1

x2

x3

x4

 = x3


0
0
1
0

+ x4


−1
0
0
1



Hence, {


0
0
1
0

 ,


−1
0
0
1

} is a basis of Nul(B).

b) The row space of B is orthogonal to Nul(B). Hence it is enough to find a basis of Row(B).

BT =


1 1
1 0
0 0
1 1

 R2→R2−R1,R4→R4−R1−−−−−−−−−−−−−−→


1 1
0 −1
0 0
0 0

 .

Hence, {


1
1
0
1

 ,


1
0
0
1

} is a basis of Row(B) (in this case, we could have argued right away

that the two vectors are independent because it is only two and they are not multiples of each

other). Thus {


1
1
0
1

 ,


1
0
0
1

} is linearly independent and each one is orthogonal to Nul(B).

c) By part a) {
[
1
1

]
,

[
1
0

]
} are the pivot columns of B and hence form a basis of Col(B).

Hence dimCol(B) = 2 and so R2 = Col(B). Hence a vector v that is orthogonal to Col(B),
is orthogonal to every vector in R2. In particular, v is orthogonal to itself. That is v · v = 0.
But then v = 0. Hence, there is no non-zero vector orthogonal to Col(B).

(Another way to see this, is to note that the orthogonal complement has dimension 0, and
so only contains the zero vector.)

6. Let B := {

1
0
0

 ,

0
1
0

 ,

1
1
1

} be a basis of R3. Let T : R3 → R3 be the linear transformation

that maps

xy
z

 in R3 to

zx
y

. Determine the matrix corresponding to T with respect to the

bases B and B.

Solution: We have:
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T (

1
0
0

) =

0
1
0

 = 0

1
0
0

+ 1

0
1
0

+ 0

1
1
1


T (

0
1
0

) =

0
0
1

 = (−1)

1
0
0

+ (−1)

0
1
0

+ 1

1
1
1


T (

1
1
1

) =

1
1
1

 = 0

1
0
0

+ 0

0
1
0

+ 1

1
1
1


Therefore, the matrix corresponding to T with respect to the bases B and B is:

A =

0 −1 0
1 −1 0
0 1 1


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7. Let I : P3 → P4 be the linear transformation that maps p(t) to

tp(t) + p′(t)

Consider the basis B = {1, t, t2, t3} of P3 and the basis C = {1, t, t2, t3, t4} of P4. Determine
the matrix which represents I with respect to the bases B and C.

Solution: We have:

I(1) = t.1− 0 = 0.1 + 1.t + 0.t2 + 0.t3 + 0.t4

I(t) = t2 + 1 = 1.1 + 0.t + 1.t2 + 0.t3 + 0.t4

I(t2) = t3 + 2.t = 0.1 + 2.t + 0.t2 + 1.t3 + 0.t4

I(t3) = t4 + 3.t2 = 0.1 + 0.t + 3.t2 + 0.t3 + 1.t4

Therefore, the matrix A that represent I with respect to the bases B and C is: (we put coeffi-
cients of I(1), I(t), I(t2), and I(t3) respectively in the first, second, third, and forth column)

0 1 0 0
1 0 2 0
0 1 0 3
0 0 1 0
0 0 0 1



8. True or False? Justify your answers.

(a) The map T : R2 → R given by T

[
a
b

]
=
√
a2 + b2 is a linear transformation.

(b) The map T : R2 → R2 given by T

[
a
b

]
=

[
−b
a

]
is a linear transformation.

(c) If u and v in R2 are such that u · v = 0 (u and v are orthogonal) then u and v are
perpendicular (geometrically) to each other.

(d) Let V be a subspace and u, v be two vectors in V , then v− u·v
u·uu is orthogonal to u.

(e) Let T : V → W be a linear transformation and v1, v2, ..., vn be vectors in V . If
T (v1), T (v2), ..., T (vn) are linearly independent then v1, v2, ..., vn are also linearly in-
dependent.

(f) Let T : V → W be a linear transformation and v1, v2, ..., vn be vectors in V . If
v1, v2, ..., vn are linearly independent then T (v1), T (v2), ..., T (vn) are also linearly in-
dependent.

(g) Let T : R2 → R3 be a linear transformation. The dimension of the image of T is equal
to 2.

Solution:

(a) False, since we have:

T

[
−1
−1

]
6= −T

[
1
1

]
(b) True. Since we have:

T

[
a
b

]
+T

[
a′

b′

]
=

[
−b
a

]
+

[
−b′
a′

]
=

[
−(b + b′)
a + a′

]
= T

[
a + a′

b + b′

]
, T

[
ra
rb

]
=

[
−rb
ra

]
= r

[
−b
a

]
= rT

[
a
b

]
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(Alternatively, can you see which matrix gives rise, by matrix multiplication, to the
same map?)

(c) True, let a and b be two vectors in R2. Then:

[length(a−b)]2 = (a−b)·(a−b) = a·a−2a·b+b·b = a·a+b·b = [length(a)]2+[length(b)]2

Thus by the Pythagorean theorem, a and b are perpendicular to each other.
(d) True, since we have:

u · (v− u · v
u · u

u) = u · v− u · v
u · u

u · u = 0

(e) True, since if x1v1 + x2v2 + ...+ xnvn = 0 then x1T (v1) + x2T (v2) + ...+ xnT (vn) = 0,
but T (v1), T (v2), ..., T (vn) are linearly independent so all xis are equal to 0.

(f) False, consider T : R3 → R so that T (v) = 0 (every vector is sent to zero).
(g) False, by (e) we know that the dimension of the image of T is at most 2, but it is not

necessarily equal to 2. Consider T : R2 → R3 so that T (v) = 0 (again, every vector is
sent to zero).
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