
Review

Let A be n×n with independent eigenvectors x1,
 ,xn.

Then A can be diagonalized as A=PDP−1.

• the columns of P are the eigenvectors

• the diagonal matrix D has the eigenvalues on the diagonal

Why? We need to see that AP =PD:

Axi=λixi � A





| |
x1 � xn

| |



 =





| |
λ1x1 � λnxn

| |





=





| |
x1 � xn

| |









λ1

�

λn





• The differential equation y ′= ay with initial condition y(0)=C

is solved by y(t)=Ceat.

Recall from Calculus the Taylor series et=1+ t+
t2

2!
+

t3

3!
+


• Goal: similar treatment of systems like:

y
′=





2 0 0
−1 3 1
−1 1 3



y , y(0)=





1
2
1





Definition 1. Let A be n×n. The matrix exponential is

eA= I +A+
1

2!
A2+

1

3!
A3+�

Then:
d

dt
eAt=AeAt

Why?
d

dt
eAt =

d

dt

(

I +At+
1

2!
A2t2+

1

3!
A3t3+�

)

=A+
1

1!
A2t+

1

2!
A3t2+� =AeAt

The solution to y
′=Ay, y(0)= y0 is y(t)= eAt

y0.

Why? Because y
′(t)=AeAt

y0=Ay(t) and y(0)= e0Ay0= y0.

Example 2. If A=
[

2 0

0 5

]

, then:

eA=

[

1 0
0 1

]

+

[

2 0
0 5

]

+
1

2!

[

22 0

0 52

]

+� =

[

e2 0

0 e5

]

eAt=

[

1 0
0 1

]

+

[

2t 0
0 5t

]

+
1

2!

[

(2t)2 0

0 (5t)2

]

+� =

[

e2t 0

0 e5t

]

Clearly, this works to obtain eD for any diagonal matrix D.
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Example 3. Suppose A=PDP−1. Then, what is An?

Solution.

First, note that A2=(PDP−1)(PDP−1)=PD2P−1.

Likewise, An=PDnP−1.

(The point being that Dn is trivial to compute because D is diagonal.)

Theorem 4. Suppose A=PDP−1. Then, eA=PeDP−1.

Why? Recall that An=PDnP−1.

eA = I +A+
1

2!
A2+

1

3!
A3+�

= I +PDP−1+
1

2!
PD2P−1+

1

3!
PD3P−1+�

= P

(

I +D+
1

2!
D2+

1

3!
D3+�

)

P−1=PeDP−1

Example 5. Solve the differential equation

y
′=

[

0 1
1 0

]

y , y(0)=

[

1
0

]

.

Solution. The solution to y
′=Ay, y(0)= y0 is y(t)= eAt

y0.

• Diagonalize A=
[

0 1

1 0

]

:

◦

∣

∣

∣

∣

−λ 1

1 −λ

∣

∣

∣

∣

= λ2
− 1, so the eigenvalues are ±1

◦ λ=1 has eigenspace Nul
(

[

−1 1

1 −1

]

)

= span
{

[

1

1

]

}

◦ λ=−1 has eigenspace Nul
(

[

1 1

1 1

]

)

= span
{

[

−1

1

]

}

◦ Hence, A=PDP−1 with P =
[

1 −1

1 1

]

and D=
[

1 0

0 −1

]

.

• Compute the solution y= eAt
y0:

y = PeDtP−1
y0

=

[

1 −1
1 1

]

[

et 0
0 e−t

]

1

2

[

1 1
−1 1

][

1
0

]

=
1

2

[

1 −1
1 1

]

[

et 0

0 e−t

]

[

1
−1

]

=
1

2

[

1 −1
1 1

]

[

et

−e−t

]

=
1

2

[

et+ e−t

et− e−t

]
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Example 6. Solve the differential equation

y
′=





2 0 0
−1 3 1
−1 1 3



y , y(0)=





1
2
1



.

Solution.

• Recall that the solution to y
′=Ay, y(0)= y0 is y= eAt

y0.

• A has eigenvalues 2 and 4. (We did that in an earlier class!)

◦ λ=2:





0 0 0

−1 1 1

−1 1 1





� eigenspace span

{





1

1

0



,





1

0

1





}

◦ λ=4:





−2 0 0

−1 −1 1

−1 1 −1





� eigenspace span

{





0

1

1





}

• A= PDP−1 with P =





1 1 0

1 0 1

0 1 1



, D=





2

2

4





• Compute the solution y= eAt
y0:

y= eAt
y0 = PeDtP−1

y0

=





1 1 0
1 0 1
0 1 1











e2t

e2t

e
4t











1 1 0
1 0 1
0 1 1





−1




1
2
1





=





1 1 0
1 0 1
0 1 1











e2t

e2t

e4t











1
0
1





=





1 1 0
1 0 1
0 1 1











e2t

0

e4t






=







e2t

e2t+ e4t

e4t







Check (optional) that y=







e2t

e2t + e4t

e4t






indeed solves the original problem:

y
′=







2e2t

2e2t+4e4t

4e4t






@

!





2 0 0
−1 3 1
−1 1 3











e2t

e2t+ e4t

e4t







Remark 7. The matrix exponential shares many other properties of the usual exponen-
tial:

• eA is invertible and (eA)−1= e−A

• eAeB= eA+B= eBeA if AB=BA
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Ending the Halloween torture

perimeter = 4

perimeter = π

perimeter = 4

perimeter = π

perimeter = 4

perimeter = π

perimeter = 4

perimeter = π

perimeter = 4

perimeter = π

• Length of the graph of y(x) on [a, b] is
∫

a

b
1+ y ′(x)2

√

dx.

• While the blue curve does converge to the circle,
its derivative does not converge!

• In the language of functional analysis:
The linear map D: y� y ′ is not continuous!

(That is, two functions can be close without their derivatives being close.)

Even more extreme examples are provided by fractals. The Koch snowflake:
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• Its perimeter is infinite!

Why? At each iteration, the perimeter gets multiplied by 4/3.

• Its boundary has dimension log3 (4)≈ 1.262!!

the effect of zooming in by a factor of 3
×3 d=1= log3 (3)

×9 d=2= log3 (3)

×4 d= log3 (4)

• Such fractal behaviour is also observed when attempting to measure the length of
a coastline: the measured length increases by a factor when using a smaller scale.

See: http://en.wikipedia.org/wiki/Coastline_paradox
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