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Happy Halloween!



Review

e = is a least squares solution of the system Ax =0

<= a is such that Az — b is as small as possible

FTLA
< ATAz =A™ (the normal equations)

Application: least squares lines

Example 1. Find (1, 35 such that the line y = (51 + B2z best fits the data points (2,1),
(5,2),(7,3),(8,3).
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http://mathworld.wolfram.com/LeastSquaresFitting.html

Solution. The equations y; = 31 + [Box; in matrix form:
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Here, we need to find a least squares solution to
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Hence, the least squares line is y:§+%x.
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How well does the line fit the data (2,1),(5,2),(7,3),(8,3)7

How small is the sum of squares of the vertical offsets?
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e residual sum of squares: SS,.s =" (y; — (51 + B2x4))?

L J
error at (z4,y:)

The choice of 31, B2 from least squares, makes SS,.s as small as possible.

e total sum of squares: SS;.: =>_ (y; — 7)%,

where yj:%z y; is the mean of the observed data

SSres
Sstot

e coefficient of determination: R2=1 —

General rule: the closer R2 is to 1, the better the regression line fits the data.

Here, y =9/4: (2,1),(5,2),(7,3),(8,3)
R%=
(=G s (o= () (1- (327) ' 1 (3.
R ) o G
:1—2"775:0.974

very close to 1 = good fit

‘ Other curves

We can also fit the experimental data (z;, y;) using other curves.

Example 2. y; ~ 81 + fox; + Bsx? with parameters 31, (o, fs.
The equations y; = 81 + Box; + P32 in matrix form:

[1 T x%-|

B1 [ Y1 -I
1 zo 23 . Y2
1 2 || P2 = Y3
X X
.2 3L Bs :
design matrix X observation
vector y

Given data (x;, y;), we then find the least squares solution to X3 =y.

‘ Multiple linear regression

In statistics, linear regression is an approach for modeling the relation-
ship between a scalar dependent variable and one or more explanatory
variables.

The case of one explanatory variable is called simple linear regression.

For more than one explanatory variable, the process is called multiple
linear regression.

http://en.wikipedia.org/wiki/Linear_regression

The experimental data might be of the form (v;, w;, y;), where now the dependent
variable y; depends on two explanatory variables v;, w; (instead of just one x;).

Armin Straub 4
astraub@illinois.edu



Example 3. Fitting a linear relationship y; ~ 51+ Bov; + B3w;, we get:
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design matrix observation

vector

And we again proceed by finding a least squares solution.

Review

e Suppose vq,..., Uy, is an orthonormal basis of .

The orthogonal projection of x onto WV is:

z= (xz,v)vy +..+ (x,0m)Un
R -
proj. of @ onto w; proj. of @ onto v,,

(To stay agile, we are writing (&, v1) = - v; for the inner product.)

Gram-Schmidt
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Example 4. Find an orthonormal basis for V' =span {

I

Recipe. (Gram—Schmidt orthonormalization)

Given a basis a, ..., a,, produce an orthonormal basis qy, ..., q,.

b
bi=an a=p
b2
bo=as— (a2, q1)q1, =,
b3
bz =as— (as, q1)q1 — (a3, 42)q2, &= [bs]
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Example 5. Find an orthonormal basis for V' = span 8,[(1)1{1}.
Hi8IH
Solution.
o ;
bl:\‘OJ’ q1= 0
0 L0 |
[2} 2 ] [0 ] [0 ]
522{(1)|—< é ,q1)q1= é , q2= (1)
0 0 | | 0 ] | O ]
N 1 ; 1
bs = — sq1)q1— ;q42)q2 = ) a=—x
L il ol
1 1 1] 1 1

We have obtained an orthonormal basis for V:
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