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Happy Halloween!
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Review

• x̂ is a least squares solution of the system Ax= b

� x̂ is such that Ax̂ − b is as small as possible

G

FTLA
ATAx̂ =ATb (the normal equations)

Application: least squares lines

Example 1. Find β1, β2 such that the line y= β1+ β2x best fits the data points (2,1),
(5, 2), (7, 3), (8, 3).

0 2 4 6 8

0

2

4

Comment . As usual in practice, we are minimizing the (sum of squares of the) vertical offsets:

http://mathworld.wolfram.com/LeastSquaresFitting.html

Solution. The equations yi= β1+ β2xi in matrix form:
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







1 x1

1 x2

1 x3

1 x4









design matrix X

[

β1

β2

]

=









y1
y2
y3
y4









observation
vector y

Here, we need to find a least squares solution to








1 2

1 5

1 7

1 8









[

β1

β2

]

=









1

2

3

3









.

XTX =

[

1 1 1 1

2 5 7 8

]









1 2

1 5

1 7

1 8









=

[

4 22

22 142

]

XTy=

[

1 1 1 1

2 5 7 8

]









1

2

3

3









=

[

9

57

]

Solving
[

4 22

22 142

]

β̂ =
[

9
57

]

, we find
[

β1

β2

]

=
[

2/7
5/14

]

.

Hence, the least squares line is y=
2

7
+

5

14
x.

0 2 4 6 8

0

2

4

How well does the line fit the data (2, 1), (5, 2), (7, 3), (8, 3)?

How small is the sum of squares of the vertical offsets?
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• residual sum of squares: SSres =
∑

(yi− (β1+ β2xi)

error at (xi,yi)

)2

The choice of β1, β2 from least squares, makes SSres as small as possible.

• total sum of squares: SStot=
∑

(yi− ȳ)2,

where ȳ =
1

n

∑

yi is the mean of the observed data

• coefficient of determination: R2=1−
SSr e s

SSt o t

General rule: the closer R2 is to 1, the better the regression line fits the data.

Here, ȳ =9/4: (2, 1), (5, 2), (7, 3), (8, 3)

R2=

1−

(

1−
(

2

7
+

5

14
2

))

2

+

(

2−
(

2

7
+

5

14
5

))

2

+

(

3−
(

2

7
+

5

14
7

))

2

+

(

3−
(

2

7
+

5

14
8

))

2

(

1− 9

4

)

2

+

(

2− 9

4

)

2

+

(

3− 9

4

)

2

+

(

3− 9

4

)

2

= 1− 0.075

2.75
= 0.974

very close to 1� good fit

Other curves

We can also fit the experimental data (xi, yi) using other curves.

Example 2. yi≈ β1+ β2xi+ β3xi
2 with parameters β1, β2, β3.

The equations yi= β1+ β2xi+ β3xi
2 in matrix form:











1 x1 x1
2

1 x2 x2
2

1 x3 x3
2


 
 












design matrix X





β1
β2
β3



=









y1
y2
y3











observation
vector y

Given data (xi, yi), we then find the least squares solution to Xβ= y.

Multiple linear regression

In statistics, linear regression is an approach for modeling the relation-

ship between a scalar dependent variable and one or more explanatory

variables.

The case of one explanatory variable is called simple linear regression.

For more than one explanatory variable, the process is called multiple

linear regression.

http://en.wikipedia.org/wiki/Linear_regression

The experimental data might be of the form (vi, wi, yi), where now the dependent
variable yi depends on two explanatory variables vi, wi (instead of just one xi).
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Example 3. Fitting a linear relationship yi≈ β1+ β2vi+ β3wi, we get:








1 v1 w1

1 v2 w2

1 v3 w3


 
 










design matrix





β1

β2

β3



=









y1
y2
y3











observation
vector

And we again proceed by finding a least squares solution.

Review

v1

v2

x

x̂

x
⊥

• Suppose v1,
 ,vm is an orthonormal basis of W .

The orthogonal projection of x onto W is:

x̂= 〈x,v1〉v1

proj. of x onto v1

+
 + 〈x,vm〉vm

proj. of x onto vm

.

(To stay agile, we are writing 〈x,v1〉=x ·v1 for the inner product.)

Gram–Schmidt

Example 4. Find an orthonormal basis for V = span















1
0
0
0









,









2
1
0
0









,









1
1
1
1















.

Recipe. (Gram–Schmidt orthonormalization)

Given a basis a1,
 ,an, produce an orthonormal basis q1,
 , qn.

b1=a1, q1=
b1

‖b1‖

b2=a2− 〈a2, q1〉q1, q2=
b2

‖b2‖

b3=a3−〈a3, q1〉q1− 〈a3, q2〉q2, q3=
b3

‖b3‖
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Example 5. Find an orthonormal basis for V = span















1
0
0
0









,









2
1
0
0









,









1
1
1
1















.

Solution.

b1=









1

0

0

0









, q1=









1

0

0

0









b2=









2

1

0

0









−〈









2

1

0

0









, q1〉q1=









0

1

0

0









, q2=









0

1

0

0









b3=









1

1

1

1









−〈









1

1

1

1









, q1〉q1−〈









1

1

1

1









, q2〉q2=









0

0

1

1









, q3=
1

2
√









0

0

1

1









We have obtained an orthonormal basis for V :








1

0

0

0









,









0

1

0

0









,
1

2
√









0

0

1

1









.
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