Midterm!

e Midterm 1: Thursday, 7-8:15pm
o in 23 Psych if your last name starts with A or B
o in Foellinger Auditorium if your last name starts with C, D, ..., Z

o bring a picture ID and show it when turning in the exam

Review

e A vector space is a set I of vectors which can be added and scaled (without leaving
the space!); subject to the “usual” rules.

e W CV is asubspace of V if it is a vector space itself; that is,

o W contains the zero vector 0,

o W is closed under addition, (ie. if w,v €W then w4+ v € W)
o W is closed under scaling. (ie. if w €W and c € R then cu € W)
e span{vy,...,v,,} is always a subspace of V. (v,, .., v, are vectors in V)

Example 1. Is W = {{ 2“1;17 g }: a,bin ]R} a subspace of My, the space of 2 x 2

matrices?

Solution. No, W does not contain the zero “vector”.

Example 2. Is W = {[ 2ab_b 3Oa }:a,b in IR} a subspace of M55, the space of 2 x 2
matrices?

Solution. Write “vectors’ in W in the form

2a—b 0]  [20 ~10
l b 3a1_“{031+b{1 01

wewaf[ 20150

Like any span, W is a vector space.

to see that
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Example 3. Are the following sets vector spaces?
(a) le{[ ‘ Z }:a+3b:0,2a—c:1}
No, Wj does not contain O.

(b) Wa={[ 2fc ~2Jiab,cin R}

Yes, WQZSpanﬂé gH? _OQH;’ H}

Hence, W5 is a subspace of the vector space Matsy o of all 2 x 2 matrices.

(C) W3 = {[ atc —2b }:a,b,c in R} (more complicated)

b+3c ¢+ 7
—2 10}
o |’ 3 1|[

is in the span. (We can answer such questions!)

a+c —2b ]_{0 0

b4+3c ¢c+7 1] |00

We still have W3:|: 8 (; ]—l-SpanH é

0
0 )
Hence, W3 is a subspace if and only if { 8

o
7]

Equivalently (why?!), we have to check whether { } has solutions a, b, c.

There is no solution (—2b = 0 implies b = 0, then b + 3¢ = 0 implies ¢ = 0; this contradicts
c+7=0).
w)wq:{[g}ab>o}

[+] 23 |=] 25 | s notin wa.

No. For instance, { _4

= W

(e) Wj is the set of all polynomials p(t) such that p’(2) =1.

No. W5 does not contain the zero polynomial.

(f) We is the set of all polynomials p(t) such that p/(2) =0.

Yes. If p/(2)=0 and ¢’(2) =0, then (p+q)'(2) =p’(2) + ¢'(2) =0. Likewise for scaling.

Hence, Wy is a subspace of the vector space of all polynomials.
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What we learned before vector spaces

Linear systems

e Systems of equations can be written as Ax =b.

xr1 — 21}2 = —1 s 1 -2 T — —1
—I1 + 31’2 = 3 -1 3 o 3

Sometimes, we represent the system by its augmented matrix.
1 —-2]-1
-1 313

o no solution (such a system is called inconsistent),

e A linear system has either

<= echelon form contains row [0 ... 0|b] with b#0
o one unique solution,
<= system is consistent and has no free variables
o infinitely many solutions.
<= system is consistent and has at least one free variable
e We know different techniques for solving systems Ax =b.
o Gaussian eliminationon [ A b |
o LU decomposition A= LU

o using matrix inverse, x = A~ b
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Matrices and vectors

e A linear combination of v, vo,...,v,, is of the form
C1V1 + U2+ ... + CUm,.

e span{vy,vs,..., U, } is the set of all such linear combinations.
o Spans are always vector spaces.
o For instance, a span in R? can be {0}, a line, a plane, or R3.

e The transpose A” of a matrix A has rows and columns flipped.

{ g ?]T:P 3 —1}
o 01 4
o (A+B)T=AT 4+ BT
o (AB)T=BTAT
e An m xn matrix A has m rows and n columns.

e The product Ax of matrix times vector is

| | 1
a; as - Qp : =x1a1+ 2200+ ... + Tpan.

. | 1L 2n

e Different interpretations of the product of matrix times matrix:

o column interpretation

a b c 100 a+3c b ¢
de fll010 |=|d+3f e f
g h 1 301 g+3i h 1
o row interpretation
100 a b c a b c
010 d e f|= d e f
301 g h 1 3a+g 3b+h 3c+1

o row-column rule

(AB); j=(row i of A)-(col j of B)
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e Theinverse A~! of A is characterized by A7'A=1 (or AA™1=1).
ab] 1 [d —b
¢ d]| ad—bec| —c a

Can compute A~! using Gauss—Jordan method.

o

o

(A1) 5T [ oA

o @4T)—1::@4—1YF
o (AB)"t=B"1tA"!
o An n xn matrix A is invertible

<= A has n pivots

<= Ax=0>b has a unique solution (if true for one b, then true for all b)

Gaussian elimination

e Gaussian elimination can bring any matrix into an echelon form.

cCooc o oo
coococooll
cooco B x

cCo oo o %
cocoo Bl x x
O O O ¥ ¥ ¥
O O O ¥ ¥ ¥
co B x x x
ol x x x »
O % x %X %X %
O % %X %X %X %

It proceeds by elementary row operations:

o (replacement) Add one row to a multiple of another row.

o (interchange) Interchange two rows.

o (scaling) Multiply all entries in a row by a nonzero constant.

e Each elementary row operation can be encoded as multiplication with an elemen-
tary matrix.

a b c d
=|le—a f—b g—c h—d
7 J k [

|

—
o = O
_ o O
~ o X

b
f
J

<. 0O Q
T O

e We can continue row reduction to obtain the (unique) RREF.
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Using Gaussian elimination

Gaussian elimination and row reductions allow us:

e solve systems of linear systems
xr1=—24+2x3

0 3 —6 4|-5 10 —2 0|—-24
3 -7 88 9| ~|01 20| -7 ??re_e7+2x3
3 -9 12 6| 15 00 01| 4 3
r4=4
e compute the LU decomposition A= LU
2 1 1 1 2 1 1
4 -6 0 |=| 2 1 —8 —2
—2 7 2 -1 -1 1 1
e compute the inverse of a matrix
1 1
2 00 300
tofind| —3 0 1 :{ 001 |,We use Gauss—Jordan:
0 10 3
5 10
1
200100RREF[100500]
-3 01010 ~ 010001
0 10001 00 1 % 10

e determine whether a vector is a linear combination of other vectors

if and only if
3 0

=

1 1 1
{ 2 } is a linear combination of { 1 } and { 2

= e
o N =

1
the system corresponding to { 2 } is consistent.
3

1 1 1
(Each solution { il } gives a linear combination { 2 }:xl{ 1 }—l—azg{ })
2 3 1 0
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