
Review

• Goal: solve for u(x) in the boundary value problem (BVP)

−
d2u

dx2
= f(x), 06 x6 1, u(0)= u(1)= 0.

• replace u(x) by its values at equally spaced points in [0, 1]
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• −
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u(x+h)− 2u(x)+ u(x−h)

h2
at these points (finite differences)

• get a linear equation at each point x=h, 2h,
 , nh; for n=5, h=
1
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• Compute the LU decomposition:
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That’s how the LU decomposition of band matrices always looks like.
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LU decomposition vs matrix inverse

In many applications, we don’t just solve Ax= b for a single b, but for many different
b (think millions).

Note, for instance, that in our example of “steady-state temperature distribution in a bar” the matrix
A is always the same (it only depends on the kind of problem), whereas the vector b models the
external heat (and thus changes for each specific instance).

• That’s why the LU decomposition saves us from repeating lots of computation in
comparison with Gaussian elimination on [ A b ].

• What about computing A−1?

We are going to see that this is a bad idea. (It usually is.)

Example 1. When using LU decomposition to solve Ax= b, we employ forward and
backward substitution:

Ax= b G

A=LU

Lc= b and Ux= c

Here, we have to solve, for each b,
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x= c

by forward and backward substitution.

How many operations (additions and multiplications) are needed in the n×n case?

2(n− 1) for Lc= b, and 1+2(n− 1) for Ux= c.

So, roughly, a total of 4n operations.

On the other hand,

A−1=
1
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How many operations are needed to compute A−1
b?

This time, we need roughly 2n2 additions and multiplications.
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Conclusions

• Large matrices met in applications usually are not random but have some structure
(such as band matrices).

• When solving linear equations, we do not (try to) compute A−1.

◦ It destroys structure in practical problems.

◦ As a result, it can be orders of magnitude slower,

◦ and require orders of magnitude more memory.

◦ It is also numerically unstable.

◦ LU decomposition can be adjusted to not have these drawbacks.

A practice problem

Example 2. Above we computed the LU decomposition for n = 5. For comparison,
here are the details for computing the inverse when n=3.

Do it for n=5, and appreciate just how much computation has to be done.
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Vector spaces and subspaces

We have already encountered vectors in R
n. Now, we discuss the general concept of

vectors.

In place of the space R
n, we think of general vector spaces.

Definition 3. A vector space is a nonempty set V of elements, called vectors, which
may be added and scaled (multiplied with real numbers).

The two operations of addition and scalar multiplication must satisfy the following
axioms for all u,v ,w in V , and all scalars c, d.

(a) u+v is in V

(b) u+v=v+u

(c) (u+v)+w=u+ (v+w)

(d) there is a vector (called the zero vector) 0 in V such that u+0=u for all u in V

(e) there is a vector −u such that u+(−u)= 0

(f) cu is in V

(g) c(u+v)= cu+ cv

(h) (c+ d)u= cu+ du

(i) (cd)u= c(du)

(j) 1u=u

tl;dr � A vector space is a collection of vectors which can be added and scaled
(without leaving the space!); subject to the usual rules you would hope for.

namely: associativity, commutativity, distributivity

Example 4. Convince yourself that M2×2=
{

[

a b

c d

]

: a, b, c, d in R

}

is a vector space.

Solution. In this context, the zero vector is 0=
[

0 0
0 0

]

.

Addition is componentwise:

[

a b

c d

]

+

[

e f

g h

]

=

[

a+ e b+ f

c+ g d+h

]

Scaling is componentwise:
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ra rb
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]
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Addition and scaling satisfy the axioms of a vector space because they are defined
component-wise and because ordinary addition and multiplication are associative, com-
mutative, distributive and what not.

Important note: we do not use matrix multiplication here!

Note: as a vector space, M2×2 behaves precisely like R4; we could translate between
the two via

[
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]
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A fancy person would say that these two vector spaces are isomorphic.

Example 5. Let Pn be the set of all polynomials of degree at most n > 0. Is Pn a
vector space?

Solution. Members of Pn are of the form

p(t)= a0+ a1t+
 + ant
n,

where a0, a1,
 , an are in R and t is a variable.

Pn is a vector space.

Adding two polynomials:

[a0+ a1t+
 + ant
n] + [b0+ b1t+
 + bnt

n]

= [(a0+ b0)+ (a1+ b1)t+
 +(an+ bn)t
n]

So addition works “component-wise” again.

Scaling a polynomial:

r[a0+ a1t+
 + ant
n]

= [(ra0) + (ra1)t+
 +(ran)t
n]

Scaling works “component-wise” as well.

Again: the vector space axioms are satisfied because addition and scaling are defined
component-wise.

As in the previous example, we see that Pn is isomorphic to R
n+1:

a0+ a1t+
 + ant
n
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Example 6. Let V be the set of all polynomials of degree exactly 3. Is V a vector space?

Solution. No, because V does not contain the zero polynomial p(t)= 0.

Every vector space has to have a zero vector; this is an easy necessary (but not sufficient) criterion
when thinking about whether a set is a vector space.

More generally, the sum of elements in V might not be in V :

[1 + 4t2+ t3] + [2− t+ t2− t3] = [3− t+5t2]
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