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Goal: solve for u(x) in the boundary value problem (BVP)

replace u(x) by its values at equally spaced points in [0, 1]
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at these points (finite differences)

get a linear equation at each point x =h,2h,...,nh; for n=>5, h:%:
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Compute the LU decomposition:

That's how the LU decomposition of band matrices always looks like.
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‘ LU decomposition vs matrix inverse ‘

In many applications, we don't just solve Ax =b for a single b, but for many different
b (think millions).
Note, for instance, that in our example of “steady-state temperature distribution in a bar” the matrix

A is always the same (it only depends on the kind of problem), whereas the vector b models the
external heat (and thus changes for each specific instance).

e That's why the LU decomposition saves us from repeating lots of computation in
comparison with Gaussian elimination on [ A | b ].

e What about computing A~1?

We are going to see that this is a bad idea. (It usually is.)

Example 1. When using LU decomposition to solve Ax = b, we employ forward and
backward substitution:

Ax =0 A<::L>U Lec=b and Ux=c

Here, we have to solve, for each b,
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by forward and backward substitution.

How many operations (additions and multiplications) are needed in the n x n case?
2(n—1) for Lec=b, and 1 +2(n—1) for Uz =c.
So, roughly, a total of 4n operations.

On the other hand,
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How many operations are needed to compute A~ 'b?

This time, we need roughly 2n? additions and multiplications.
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Conclusions

e Large matrices met in applications usually are not random but have some structure
(such as band matrices).

e When solving linear equations, we do not (try to) compute A~".
o It destroys structure in practical problems.
o As a result, it can be orders of magnitude slower,
o and require orders of magnitude more memory.
o It is also numerically unstable.

o LU decomposition can be adjusted to not have these drawbacks.

| A practice problem

Example 2. Above we computed the LU decomposition for n = 5. For comparison,
here are the details for computing the inverse when n =3.

Do it for n =5, and appreciate just how much computation has to be done.
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Vector spaces and subspaces

We have already encountered vectors in R™. Now, we discuss the general concept of
vectors.

In place of the space R"”, we think of general vector spaces.

Definition 3. A vector space is a nonempty set V' of elements, called vectors, which
may be added and scaled (multiplied with real numbers).

The two operations of addition and scalar multiplication must satisfy the following
axioms for all w,v,w in V, and all scalars ¢, d.

(a)u+wvisinV
b)ut+v=v+u

(c) (u+v)+w=u+(v+w)

(d) there is a vector (called the zero vector) 0 in V such that u+0=w for all w in V'
(e) there is a vector —u such that u+ (—u) =0

f)cuisinV

(g) c(u+v)=cu+cv

(h) (c+d)u=cu+du

(i) (cd)u=c(du)

() 1lu=u

tl:dr — A vector space is a collection of vectors which can be added and scaled
(without leaving the space!); subject to the usual rules you would hope for.

namely: associativity, commutativity, distributivity

Example 4. Convince yourself that My, o= {{ ‘2 Z }: a,b,c,din IR} is a vector space.

0
o |-
Addition is componentwise:

ab+ef_a+eb+f
c d gh| | ctg d+h

Scaling is componentwise:

Solution. In this context, the zero vector is 0:{

o o
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Addition and scaling satisfy the axioms of a vector space because they are defined
component-wise and because ordinary addition and multiplication are associative, com-
mutative, distributive and what not.

Important note: we do not use matrix multiplication herel!

Note: as a vector space, My behaves precisely like IR*; we could translate between
the two via

A fancy person would say that these two vector spaces are isomorphic.

Example 5. Let IP,, be the set of all polynomials of degree at most n > 0. Is IP,, a
vector space?

Solution. Members of IP,, are of the form
p(t)=ag+art+... + ant™,

where ag, a1,...,a, are in R and ¢ is a variable.

| P, is a vector space.

Adding two polynomials:

[ag+ a1t + ... + ant™| + [bo + bit + ... + but™]
= [(ag+bo)+ (a1 +b1)t+ ... + (an + by)t"]

So addition works “component-wise” again.

Scaling a polynomial:

rlag+ a1t + ... + a,t"]
= [(rag) + (rap)t+... + (ra,)t"|

Scaling works “component-wise” as well.

Again: the vector space axioms are satisfied because addition and scaling are defined
component-wise.

As in the previous example, we see that IP,, is isomorphic to R

n ai
ap+ait+... +ant +— [ : J
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Example 6. Let V' be the set of all polynomials of degree exactly 3. Is V' a vector space?

Solution. No, because V' does not contain the zero polynomial p(¢)=0.

Every vector space has to have a zero vector; this is an easy necessary (but not sufficient) criterion
when thinking about whether a set is a vector space.

More generally, the sum of elements in V' might not be in V:

[1+42+ 3]+ 2=t +t*—t3]=[3 — t + 5t?
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