
Notes for Lecture 1 Mon, 1/13/2025

A crash course in linear algebra

Example 1. A typical 2� 3 matrix is

�
1 2 3
4 5 6

�
.

It is composed of column vectors like
�
2
5

�
and row vectors like [ 1 2 3 ].

Matrices (and vectors) of the same dimensions can be added and multiplied by a scalar:

For instance,
�
1 2 3
4 5 6

�
+

�
1 0 2
2 3 ¡1

�
=

�
2 2 5
6 8 5

�
or 3 �

�
1 2 3
4 5 6

�
=

�
3 6 9
12 15 18

�
.

Remark. More generally, a vector space is an abstraction of a collection of objects that can be
added and scaled: numbers, lists of numbers (like the above row and column vectors), arrays of
numbers (like the above matrices), arrows, functions, polynomials, differential operators, solutions
to homogeneous linear differential equations, :::

Example 2. The transpose AT of A is obtained by interchanging roles of rows and columns.

For instance.
�
1 2 3
4 5 6

�T
=

24 1 4
2 5
3 6

35

Example 3. Matrices of appropriate dimensions can also be multiplied.

This is based on the multiplication [ a b c ]

24 x
y
z

35= ax+ by+ cz of row and column vectors.

For instance.
�
1 ¡1 1
2 1 3

�24 1 0
¡1 1
2 ¡2

35=�
4 ¡3
7 ¡5

�
In general, we can multiply a m�n matrix A with a n� r matrix B to get a m� r matrix AB.

Its entry in row i and column j is defined to be (AB)ij=(row i of A)
24 column

j
of B

35.
Comment. One way to think about the multiplication Ax is that the resulting vector is a linear combination of
the columns of A with coefficients from x. Similarly, we can think of xTA as a combination of the rows of A.

Some nice properties of matrix multiplication are:
� There is an n�n identity matrix I (all entries are zero except the diagonal ones which are 1). It satisfies

AI =A and IA=A.

� The associative law A(BC)= (AB)C holds. Hence, we can write ABC without ambiguity.

� The distributive laws including A(B+C)=AB+AC hold.

Example 4.
�
2 0
0 1

��
1 2
3 4

�
=/
�
1 2
3 4

��
2 0
0 1

�
, so we have no commutative law.

Example 5.
�
3 1
2 1

��
1 ¡1
¡2 3

�
=
�
1 0
0 1

�
On the RHS we have the identity matrix, usually denoted I or I2 (since it's the 2� 2 identity matrix here).

Hence, the two matrices on the left are inverses of each other:
�
3 1
2 1

�¡1
=
�

1 ¡1
¡2 3

�
,
�

1 ¡1
¡2 3

�¡1
=
�
3 1
2 1

�
.
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The inverse A¡1 of a matrix A is characterized by A¡1A= I and AA¡1= I.

Example 6. The following formula immediately gives us the inverse of a 2�2 matrix (if it exists).
It is worth remembering!�

a b
c d

�¡1
= 1
ad¡ bc

�
d ¡b
¡c a

�
provided that ad¡ bc=/ 0

Let's check that! 1

ad¡ bc

�
d ¡b
¡c a

��
a b
c d

�
=

1

ad¡ bc

�
ad¡ bc 0

0 ¡cb+ ad

�
= I2

In particular, a 2� 2 matrix

�
a b
c d

�
is invertible () ad¡ bc=/ 0.

Recall that this is the determinant: det
��

a b
c d

��
= ad¡ bc.

det(A)= 0 () A is not invertible

Example 7. The system 7x1¡ 2x2 = 3
2x1+x2 = 5 is equivalent to

�
7 ¡2
2 1

��
x1
x2

�
=
�
3
5

�
. Solve it.

Solution. Multiplying (from the left!) by
�
7 ¡2
2 1

�¡1
=

1

11

�
1 2
¡2 7

�
produces

�
x1
x2

�
=

1

11

�
1 2
¡2 7

��
3
5

�
=

1

11

�
13
29

�
,

which gives the solution of the original equations.

Example 8. (homework) Solve the system x1+2x2 = 1
3x1+4x2 = ¡ 1 (using a matrix inverse).

Solution. The equations are equivalent to
�
1 2
3 4

��
x1
x2

�
=

�
1
¡1

�
.

Multiplying by
�
1 2
3 4

�¡1
=¡1

2

�
4 ¡2
¡3 1

�
produces

�
x1
x2

�
=¡1

2

�
4 ¡2
¡3 1

��
1
¡1

�
=¡1

2

�
6
¡4

�
=
�
¡3
2

�
.

Example 9. (homework) Solve the system x1+2x2 = 1
3x1+4x2 = 2 (using a matrix inverse).

Solution. The equations are equivalent to
�
1 2
3 4

��
x1
x2

�
=

�
1
2

�
.

Multiplying by
�
1 2
3 4

�¡1
=¡1

2

�
4 ¡2
¡3 1

�
produces

�
x1
x2

�
=¡1

2

�
4 ¡2
¡3 1

��
1
2

�
=¡1

2

�
0
¡1

�
=
�

0
1/2

�
.

Comment. In hindsight, can you see this solution by staring at the equations?
Comment. Note how we can reuse the matrix inverse from the previous example.

The determinant of A, written as det(A) or jAj, is a number with the property that:

det(A)=/ 0 () A is invertible
() Ax= b has a (unique) solution x for all b
() Ax=0 is only solved by x=0

Example 10. det
��

a b
c d

��
= ad¡ bc, which appeared in the formula for the inverse.

Armin Straub
straub@southalabama.edu

2



Notes for Lecture 2 Wed, 1/15/2025

Example 11. (review) [ 1 2 3 ]

24 1
2
3

35= [ 14 ] whereas

24 1
2
3

35[ 1 2 3 ]=

24 1 2 3
2 4 6
3 6 9

35.

Review: Examples of differential equations we can solve

Let's start with one of the simplest (and most fundamental) differential equations (DE). It is first-
order (only a first derivative) and linear with constant coefficients.

Example 12. Solve y 0=3y.
Solution. y(x)=Ce3x

Check. Indeed, if y(x)=Ce3x, then y 0(x)= 3Ce3x=3y(x).
Comment. Recall we can always easily check whether a function solves a differential equation. This means that
(although you might be unfamiliar with the techniques for solving) you can use computer algebra systems like
Sage to solve differential equations without trust issues.

To describe a unique solution, additional constraints need to be imposed.

Example 13. Solve the initial value problem (IVP) y 0=3y, y(0)= 5.
Solution. This has the unique solution y(x)= 5e3x.

The following is a nonlinear differential equation. In general, such equations are much more
complicated than linear ones. We can solve this particular one because it is separable.

Example 14. Solve y 0=xy2.

Solution. This DE is separable: 1

y2
dy= xdx. Integrating, we find ¡1

y
=
1

2
x2+C.

Hence, y=¡ 1
1
2
x2+C

=
2

D¡ x2
.

[Here, D=¡2C but that relationship doesn't matter; it only matters that the solution has a free parameter.]
Note. Note that we did not find the solution y=0 (lost when dividing by y2). It is called a singular solution
because it is not part of the general solution (the one-parameter family found above). [Although, we can obtain
it from the general solution by letting D!1.]
Check. Compute y0 and verify that the DE is indeed satisfied.
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Review: Linear DEs

Linear DEs of order n are those that can be written in the form

y(n)+Pn¡1(x) y(n¡1)+ :::+P1(x)y 0+P0(x)y= f(x):

The corresponding homogeneous linear DE is the DE

y(n)+Pn¡1(x) y(n¡1)+ :::+P1(x)y 0+P0(x)y=0;

and it plays an important role in solving the original linear DE.

Important. Note that a linear DE is homogeneous if and only if the zero function y(x)= 0 is a solution.

In terms of D= d

dx
, the original DE becomes: Ly= f(x) where L is the differential operator

L=Dn+Pn¡1(x)Dn¡1+ :::+P1(x)D+P0(x):

The corresponding homogeneous linear DE is Ly=0.

Linear DEs have a lot of structure that makes it possible to understand them more deeply. Most
notably, their general solution always has the following structure:

(general solution of linear DEs) For a linear DE Ly= f(x) of order n, the general solution
always takes the form

y(x)= yp(x)+C1y1(x)+ :::+Cn yn(x);

where yp is any single solution (called a particular solution) and y1; y2; :::; yn are solutions to
the corresponding homogeneous linear DE Ly=0.

Comment. If the linear DE is already homogeneous, then the zero function y(x) = 0 is a solution and we can
use yp=0. In that case, the general solution is of the form y(x)=C1y1+C2y2+ ���+Cnyn.

Why? The key to this is that the differential operator L is linear, meaning that, for any functions f1(x); f2(x)
and any constants c1; c2, we have

L(c1f1(x)+ c2f2(x))= c1L(f1(x))+ c2L(f2(x)):

If this is not clear, consider first a case like L=Dn or work through the next example for the order 2 case.

Example 15. (extra) Suppose that L=D2+P (x)D+Q(x). Verify that the operator L is linear.

Solution. We need to show that the operator L satisfies

L(c1f1(x)+ c2f2(x))= c1L(f1(x))+ c2L(f2(x))

for any functions f1(x); f2(x) and any constants c1; c2. Indeed:

L(c1f1+ c2f2) = (c1f1+ c2f2)
00+P (x)(c1f1+ c2f2)

0+Q(x)(c1f1+ c2f2)

= c1ff100+P (x)f1
0+Q(x)f1g+ c2ff200+P (x)f2

0+Q(x)f2g
= c1 �Lf1+ c2 �Lf2
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Example 16. Consider the following DEs. If linear, write them in operator form as Ly= f(x).

(a) y 00=xy

(b) x2y 00+xy 0=(x2+4)y+x(x2+3)

(c) y 00= y 0+2y+2(1¡x¡x2)

(d) y 00= y 0+2y+2(1¡x¡ y2)

Solution.

(a) This is a homogeneous linear DE: (D2¡ x)
L

y= 0
f(x)

Note. This is known as the Airy equation, which we will meet again later. The general solution is of the
form C1y1(x)+C2y2(x) for two special solutions y1; y2. [In the literature, one usually chooses functions
called Ai(x) and Bi(x) as y1 and y2. See: https://en.wikipedia.org/wiki/Airy_function]

(b) This is an inhomogeneous linear DE: (x2D2+xD¡ (x2+4))

L

y= x(x2+3)

f(x)

Note. The corresponding homogeneous DE is an instance of the �modified Bessel equation� x2y 00 +
xy 0¡ (x2+�2)y=0, namely the case �=2. Because they are important for applications (but cannot
be written in terms of familiar functions), people have introduced names for two special solutions of this
differential equation: I�(x) and K�(x) (called modified Bessel functions of the first and second kind).
It follows that the general solution of the modified Bessel equation is C1I�(x)+C2K�(x).
In our case. The general solution of the homogeneous DE (which is the modified Bessel equation with
� = 2) is C1I2(x) + C2K2(x). On the other hand, we can (do it!) easily check (this is coming from
nowhere at this point!) that yp=¡x is a particular solution to the original inhomogeneous DE.
It follows that the general solution to the original DE is C1I2(x)+C2K2(x)¡ x.

(c) This is an inhomogeneous linear DE: (D2¡D¡ 2)
L

y=2(1¡ x¡ x2)
f(x)

Note. We will recall in Example 17 that the corresponding homogeneous DE (D2 ¡ D ¡ 2)y = 0 has
general solution C1e2x+C2e

¡x. On the other hand, we can check that yp= x2 is a particular solution
of the original inhomogeneous DE. (Do you recall from DE1 how to find this particular solution?)
It follows that the general solution to the original DE is x2+C1e

2x+C2e
¡x.

(d) This is not a linear DE because of the term y2. It cannot be written in the form Ly= f(x).
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Notes for Lecture 3 Fri, 1/17/2025

Homogeneous linear DEs with constant coefficients

Example 17. Find the general solution to y 00¡ y 0¡ 2y=0.
Solution. We recall from Differential Equations I that erx solves this DE for the right choice of r.
Plugging erx into the DE, we get r2erx¡ rerx¡ 2erx=0.
Equivalently, r2¡ r¡ 2=0. This is called the characteristic equation. Its solutions are r=2;¡1.
This means we found the two solutions y1= e2x, y2= e¡x.
Since this a homogeneous linear DE, the general solution is y=C1e

2x+C2e
¡x.

Solution. (operators) y 00¡ y 0¡ 2y=0 is equivalent to (D2¡D¡ 2)y=0.

Note that D2¡D¡ 2= (D¡ 2)(D+1) is the characteristic polynomial.
It follows that we get solutions to (D¡ 2)(D+1)y=0 from (D¡ 2)y=0 and (D+1)y=0.

(D¡ 2)y=0 is solved by y1= e2x, and (D+1)y=0 is solved by y2= e¡x; as in the previous solution.

Example 18. Solve y 00¡ y 0¡ 2y=0 with initial conditions y(0)= 4, y 0(0)=5.
Solution. From the previous example, we know that y(x)=C1e

2x+C2e
¡x.

To match the initial conditions, we need to solve C1+C2=4, 2C1¡C2=5. We find C1=3, C2=1.
Hence the solution is y(x)= 3e2x+ e¡x.

Set D = d

dx
. Every homogeneous linear DE with constant coefficients can be written as

p(D)y=0, where p(D) is a polynomial in D, called the characteristic polynomial.

For instance. y 00¡ y0¡ 2y=0 is equivalent to Ly=0 with L=D2¡D¡ 2.

Example 19. Find the general solution of y 000+7y 00+ 14y 0+8y=0.
Solution. This DE is of the form p(D) y=0 with characteristic polynomial p(D)=D3+7D2+ 14D+8.
The characteristic polynomial factors as p(D)= (D+1)(D+2)(D+4). (Don't worry! You won't be asked to
factor cubic polynomials by hand.)
Hence, by the same argument as in Example 17, we find the solutions y1= e¡x, y2= e¡2x, y3= e¡4x. That's
enough (independent!) solutions for a third-order DE.
The general solution therefore is y(x)=C1 e

¡x+C2 e
¡2x+C3 e

¡4x.

This approach applies to any homogeneous linear DE with constant coefficients!
One issue is that roots might be repeated. In that case, we are currently missing solutions. The following result
provides the missing solutions.

Theorem 20. Consider the homogeneous linear DE with constant coefficients p(D)y=0.

� If r is a root of the characteristic polynomial and if k is its multiplicity, then k (inde-
pendent) solutions of the DE are given by xjerx for j=0; 1; :::; k¡ 1.

� Combining these solutions for all roots, gives the general solution.
This is because the order of the DE equals the degree of p(D), and a polynomial of degree n has (counting
with multiplicity) exactly n (possibly complex) roots.

In the complex case. If r = a � bi are roots of the characteristic polynomial and if k is its multiplicity, then
2k (independent) real solutions of the DE are given by xjeaxcos(bx) and xjeaxsin(bx) for j=0; 1; :::; k¡ 1.
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Proof. Let r be a root of the characteristic polynomial of multiplicity k. Then p(D)= q(D) (D¡ r)k.
We need to find k solutions to the simpler DE (D¡ r)ky=0.
It is natural to look for solutions of the form y= c(x)erx.
[We know that c(x)= 1 provides a solution. Note that this is the same idea as for variation of constants.]

Note that (D¡ r)[c(x)erx] = (c0(x)erx+ c(x)rerx)¡ rc(x)erx= c0(x)erx.

Repeating, we get (D ¡ r)2[c(x)erx] = (D ¡ r)[c 0(x)erx] = c 00(x)erx and, eventually, (D ¡ r)k[c(x)erx] =

c(k)(x)erx.
In particular, (D¡ r)ky=0 is solved by y= c(x)erx if and only if c(k)(x)= 0.

The DE c(k)(x)=0 is clearly solved by xj for j=0;1; :::;k¡1, and it follows that xjerx solves the original DE. �

Example 21. Find the general solution of y 000=0.
Solution. We know from Calculus that the general solution is y(x)=C1+C2x+C3x

2.

Solution. The characteristic polynomial p(D) =D3 has roots 0; 0; 0. By Theorem 20, we have the solutions
y(x)= xj e0x= xj for j=0; 1; 2, so that the general solution is y(x)=C1+C2x+C3x

2.

Example 22. Find the general solution of y 000¡ y 00¡ 5y 0¡ 3y=0.
Solution. The characteristic polynomial p(D)=D3¡D2¡ 5D¡ 3= (D¡ 3)(D+1)2 has roots 3;¡1;¡1.
By Theorem 20, the general solution is y(x)=C1e

3x+(C2+C3x)e
¡x.

Example 23. Find the general solution of y 00+ y=0.
Solution. The characteristic polynomials is p(D)=D2+1=0 which has no solutions over the reals.
Over the complex numbers, by definition, the roots are i and ¡i.
So the general solution is y(x)=C1 e

ix+C2 e
¡ix.

Solution. On the other hand, we easily check that y1= cos(x) and y2= sin(x) are two solutions.
Hence, the general solution can also be written as y(x)=D1 cos(x)+D2 sin(x).

Important comment. That we have these two different representations is a consequence of Euler's identity

eix= cos(x)+ i sin(x):

Note that e¡ix= cos(x)¡ i sin(x).

On the other hand, cos(x)= 1

2
(eix+ e¡ix) and sin(x)= 1

2i
(eix¡ e¡ix).

[Recall that the first formula is an instance of Re(z)= 1

2
(z+ z�) and the second of Im(z)= 1

2i
(z¡ z�).]

Example 24. Find the general solution of y 00¡ 4y 0+ 13y=0.
Solution. The characteristic polynomial p(D)=D2¡ 4D+ 13 has roots 2+3i; 2¡ 3i.
Hence, the general solution is y(x)=C1e

2xcos(3x)+C2e
2xsin(3x).

Note. e(2+3i)x= e2xe3ix= e2x(cos(3x)+ i sin(3x))
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Notes for Lecture 4 Mon, 1/27/2025

Example 25. (review) Find the general solution of y 000¡ 3y 0+2y=0.
Solution. The characteristic polynomial p(D)=D3¡ 3D+2= (D¡ 1)2(D+2) has roots 1; 1;¡2.
By Theorem 20, the general solution is y(x)= (C1+C2x)e

x+C2e
¡2x.

Example 26. (review) Consider the function y(x)= 7x¡ 5x2e4x. Find an operator p(D) such
that p(D)y=0.
Comment. This is the same as determining a homogeneous linear DE with constant coefficients solved by y(x).

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include 0; 0; 4; 4; 4.

The simplest choice for p(D) thus is p(D)=D2(D¡ 4)3.

Inhomogeneous linear DEs: The method of undetermined coefficients

The method of undetermined coefficients allows us to solve certain inhomogeneous linear DEs
Ly= f(x) with constant coefficients..

It works if f(x) is itself a solution of a homogeneous linear DE with constant coefficients (see previous example).

Example 27. Determine the general solution of y 00+4y= 12x.
Solution. The DE is p(D)y = 12x with p(D) = D2 + 4, which has roots �2i. Thus, the general solution is
y(x)= yp(x)+C1cos(2x)+C2sin(2x). It remains to find a particular solution yp.

Since D2 � (12x)= 0, we apply D2 to both sides of the DE to get the homogeneous DE D2(D2+4) � y=0.
Its general solution is C1+C2x+C3cos(2x)+C4sin(2x) and yp must be of this form. Indeed, there must be a
particular solution of the simpler form yp=C1+C2x (because C3cos(2x)+C4sin(2x) can be added to any yp).
It remains to find appropriate values C1;C2 such that yp

00+4yp=12x. Since yp00+4yp=4C1+4C2x, comparing
coefficients yields 4C1=0 and 4C2= 12, so that C1=0 and C2=3. In other words, yp=3x.
Therefore, the general solution to the original DE is y(x)= 3x+C1cos(2x)+C2sin(2x).

Example 28. Determine the general solution of y 00+4y 0+4y= e3x.
Solution. The DE is p(D)y= e3x with p(D) =D2+4D+4= (D+2)2, which has roots ¡2;¡2. Thus, the
general solution is y(x)= yp(x)+ (C1+C2x)e

¡2x. It remains to find a particular solution yp.

Since (D¡ 3)e3x=0, we apply (D¡ 3) to the DE to get the homogeneous DE (D¡ 3)(D+2)2y=0.

Its general solution is (C1+C2x)e
¡2x+C3e

3x and yp must be of this form. Indeed, there must be a particular
solution of the simpler form yp=Ae3x.

To determine the value of C, we plug into the original DE: yp
00+4yp

0 +4yp=(9+4 � 3+4)Ae3x=
!
e3x. Hence,

A=1/25. Therefore, the general solution to the original DE is y(x)= (C1+C2x)e
¡2x+

1

25
e3x.

Solution. (same, just shortened) In schematic form:

homogeneous DE inhomogeneous part
characteristic roots ¡2;¡2 3

solutions e¡2x; xe¡2x e3x

This tells us that there exists a particular solution of the form yp=Ae3x. Then the general solution is

y= yp+C1e
¡2x+C2xe

¡2x:

So far, we didn't need to do any calculations (besides determining the roots)! However, we still need to determine
the value of A (by plugging into the DE as above), namely A= 1

25 . For this reason, this approach is often called
the method of undetermined coefficients.
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We found the following recipe for solving nonhomogeneous linear DEs with constant coefficients:

That approach works for p(D)y= f(x) whenever the right-hand side f(x) is the solution of some homogeneous
linear DE with constant coefficients: q(D)f(x)= 0

(method of undetermined coefficients) To find a particular solution yp to an inhomogeneous
linear DE with constant coefficients p(D)y= f(x):

� Determine the characteristic roots of the homogeneous DE and corresponding solutions.

� Find the roots of q(D) so that q(D)f(x)= 0. [This does not work for all f(x).]

Let yp;1; yp;2; ::: be the additional solutions (when the roots are added to those of the
homogeneous DE).

Then there exist (unique) Ci so that

yp=C1yp;1+C2yp;2+ :::

To find the values Ci, we need to plug yp into the original DE.

Why? To see that this approach works, note that applying q(D) to both sides of the inhomogeneous DE
p(D)y = f(x) results in q(D)p(D)y = 0 which is homogeneous. We already know that the solutions to the
homogeneous DE can be added to any particular solution yp. Therefore, we can focus only on the additional
solutions coming from the roots of q(D).

For which f(x) does this work? By Theorem 20, we know exactly which f(x) are solutions to homoge-
neous linear DEs with constant coefficients: these are linear combinations of exponentials xjerx (which includes
xj eaxcos(bx) and xj eaxsin(bx)).

Example 29. Determine the general solution of y 00+4y 0+4y=7e¡2x.
Solution. The homogeneous DE is y 00 + 4y 0 + 4y = 0 (note that D2 + 4D + 4 = (D + 2)2) and the
inhomogeneous part is 7e¡2x.

homogeneous DE inhomogeneous part
characteristic roots ¡2;¡2 ¡2

solutions e¡2x; xe¡2x x2e¡2x

This tells us that there exists a particular solution of the form yp=Cx2 e¡2x. To find the value of C, we plug
into the DE.
yp
0 =C(¡2x2+2x)e¡2x

yp
00=C(4x2¡ 8x+2)e¡2x

yp
00+4yp

0 +4yp=2Ce¡2x=
!
7e¡2x

It follows that C =
7

2
, so that yp=

7

2
x2e¡2x. Hence the general solution is

y(x)=

�
C1+C2x+

7
2
x2
�
e¡2x:

Example 30. Consider the DE y 00+4y 0+4y=2e3x¡ 5e¡2x.

(a) What is the simplest form (with undetermined coefficients) of a particular solution?

(b) Determine a particular solution using our results from Examples 28 and 29.

(c) Determine the general solution.
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Solution.

(a) Note that D2+4D+4= (D+2)2.

homogeneous DE inhomogeneous part
characteristic roots ¡2;¡2 3;¡2

solutions e¡2x; xe¡2x e3x; x2e¡2x

Hence, there has to be a particular solution of the form yp=Ae3x+Bx2e¡2x.
To find the (unique) values of A and B, we can plug into the DE. Alternatively, we can break the problem
into two pieces as illustrated in the next part.

(b) Write the DE as Ly=2e3x¡ 5e¡2x where L=D2+4D+4. In Example 28 we found that y1=
1

25
e3x

satisfies Ly1= e3x. Also, in Example 29 we found that y2=
7

2
x2e¡2x satisfies Ly2=7e¡2x.

By linearity, it follows that L(Ay1+By2)=ALy1+BLy2=Ae3x+7Be¡2x.
To get a particular solution yp of our DE, we need A=2 and 7B=¡5.

Hence, yp=2y1¡ 5

7
y2=

2

25
e3x¡ 5

2
x2e¡2x.

Comment. Of course, if we hadn't previously solved Examples 28 and 29, we could have plugged the result
from the first part into the DE to determine the coefficients A and B. On the other hand, breaking the
inhomogeneous part (2e3x¡ 5e¡2x) up into pieces (here, e3x and e¡2x) can help keep things organized,
especially when working by hand.

(c) The general solution is 2

25
e3x¡ 5

2
x2e¡2x+(C1+C2x)e

2x.

Example 31. Consider the DE y 00¡ 2y 0+ y=5sin(3x).

(a) What is the simplest form (with undetermined coefficients) of a particular solution?

(b) Determine a particular solution.

(c) Determine the general solution.

Solution. Note that D2¡ 2D+1= (D¡ 1)2.
homogeneous DE inhomogeneous part

characteristic roots 1; 1 �3i
solutions ex; xex cos(3x); sin(3x)

(a) This tells us that there exists a particular solution of the form yp=A cos(3x)+B sin(3x).

(b) To find the values of A and B, we plug into the DE.

yp
0 =¡3A sin(3x)+ 3B cos(3x)

yp
00=¡9A cos(3x)¡ 9B sin(3x)

yp
00¡ 2yp0 + yp=(¡8A¡ 6B)cos(3x)+ (6A¡ 8B)sin(3x)=

!
5sin(3x)

Equating the coefficients of cos(x), sin(x), we obtain the two equations¡8A¡6B=0 and 6A¡8B=5.

Solving these, we find A= 3

10
, B=¡2

5
. Accordingly, a particular solution is yp=

3

10
cos(3x)¡ 2

5
sin(3x).

(c) The general solution is y(x)= 3

10
cos(3x)¡ 2

5
sin(3x)+ (C1+C2x)e

x.

Example 32. Consider the DE y 00¡ 2y 0+ y = 5e2xsin(3x) + 7xex. What is the simplest form
(with undetermined coefficients) of a particular solution?

Solution. SinceD2¡2D+1=(D¡1)2, the characteristic roots are 1;1. The roots for the inhomogeneous part
are 2� 3i; 1; 1. Hence, there has to be a particular solution of the form yp=Ae2xcos(3x) +Be2xsin(3x) +
Cx2ex+Dx3ex.
(We can then plug into the DE to determine the (unique) values of the coefficients A;B;C;D.)

Armin Straub
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Example 33. (homework)What is the shape of a particular solution of y 00+4y 0+4y=xcos(x)?
Solution. The characteristic roots are ¡2;¡2. The roots for the inhomogeneous part are �i;�i. Hence, there
has to be a particular solution of the form yp=(C1+C2x)cos(x)+ (C3+C4x)sin(x).

Continuing to find a particular solution. To find the value of the Cj's, we plug into the DE.
yp
0 =(C2+C3+C4x)cos(x)+ (C4¡C1¡C2x)sin(x)
yp
00=(2C4¡C1¡C2x)cos(x)+ (¡2C2¡C3¡C4x)sin(x)
yp
00+4yp

0 +4yp=(3C1+4C2+4C3+2C4+(3C2+4C4)x)cos(x)

+ (¡4C1¡ 2C2+3C3+4C4+(¡4C2+3C4)x)sin(x)=
!
x cos(x).

Equating the coefficients of cos(x), xcos(x), sin(x), xsin(x), we get the equations 3C1+4C2+4C3+2C4=0,
3C2+4C4=1, ¡4C1¡ 2C2+3C3+4C4=0, ¡4C2+3C4=0.

Solving (this is tedious!), we find C1=¡ 4

125
, C2=

3

25
, C3=¡ 22

125
, C4=

4

25
.

Hence, yp=
�
¡ 4

125
+

3

25
x
�
cos(x)+

�
¡ 22

125
+

4

25
x
�
sin(x).
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Notes for Lecture 5 Wed, 1/29/2025

Example 34. (review)What is the shape of a particular solution of y 00+4y 0+4y=4e3xsin(2x)¡
x sin(x).
Solution. The characteristic roots are ¡2;¡2. The roots for the inhomogeneous part roots are 3� 2i;�i;�i.
Hence, there has to be a particular solution of the form
yp=C1e

3xcos(2x)+C2e
3xsin(2x)+ (C3+C4x)cos(x)+ (C5+C6x)sin(x).

Continuing to find a particular solution. To find the values of C1; :::; C6, we plug into the DE. But this final
step is so boring that we don't go through it here. Computers (currently?) cannot afford to be as selective; mine
obediently calculated: yp=¡ 4

841
e3x(20cos(2x)¡ 21sin(2x))+ 1

125
((¡22+ 20x)cos(x)+ (4¡ 15x)sin(x))

Sage

In practice, we are happy to let a machine do tedious computations. Let us see how to use the
open-source computer algebra system Sage to do basic computations for us.
Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it
in the cloud at cocalc.com from any browser.
[For basic computations, you can also simply use the textbox on our course website.]
Sage is built as a Python library, so any Python code is valid. For starters, we will use it as a fancy calculator.

Example 35. To solve the differential equation y 00+4y 0+4y=7e¡2x, as we did in Example 29,
we can use the following:

>>> x = var('x')

>>> y = function('y')(x)

>>> desolve(diff(y,x,2) + 4*diff(y,x) + 4*y == 7*exp(-2*x), y)

7
2
x2 e(¡2 x)+(K2x+K1) e

(¡2 x)

This confirms, as we had found, that the general solution is y(x)=
�
C1+C2x+

7

2
x2
�
e¡2x.

Example 36. Similarly, Sage can solve initial value problems such as y 00¡ y 0¡2y=0 with initial
conditions y(0)= 4, y 0(0)= 5.
>>> x = var('x')

>>> y = function('y')(x)

>>> desolve(diff(y,x,2) - diff(y,x) - 2*y == 0, y, ics=[0,4,5])

3 e(2 x)+ e(¡x)

This matches the (unique) solution y(x)= 3e2x+ e¡x that we derived in Example 18.
Higher order. Unfortunately, the command desolve currently only works like this for differential equations
of first and second order. To likewise solve a third-order differential equation, we can use the function des-
olve_laplace instead. For instance, to solve the IVP y 000=3y 00¡4y with y(0)=1, y 0(0)=¡2, y00(0)=3, use

>>> desolve_laplace(diff(y,x,3) == 3*diff(y,x,2) - 4*y, y, ics=[0,1,-2,3])

x e(2 x)¡ 2
3
e(2 x)+

5
3
e(¡x)

to find that the unique solution is y(x)= 1

3
(3x¡ 2)e2x+ 5

3
e¡x.

Armin Straub
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More on differential operators

Example 37. We have been factoring differential operators like D2+4D+4= (D+2)2.
Things become much more complicated when the coefficients are not constant!
For instance, the linear DE y 00+4y 0+4xy=0 can be written as Ly=0 with L=D2+4D+4x. However, in
general, such operators cannot be factored (unless we allow as coefficients functions in x that we are not familiar
with). [On the other hand, any ordinary polynomial can be factored over the complex numbers.]
One indication that things become much more complicated is that x and D do not commute: xD=/ Dx!!

Indeed, (xD)f(x)=xf 0(x) while (Dx)f(x)= d

dx
[xf(x)]= f(x)+ xf 0(x)= (1+ xD)f(x).

This computation shows that, in fact, Dx= xD+1.

Review. Linear DEs are those that can be written as Ly= f(x) where L is a linear differential
operator: namely,

L= pn(x)Dn+ pn¡1(x)Dn¡1+ :::+ p1(x)D+ p0(x): (1)

Recall that the operators xD and Dx are not the same: instead, Dx=xD+1.
We say that an operator of the form (1) is in normal form.

For instance. xD is in normal form, whereas Dx is not in normal form. It follows from the previous example
that the normal form of Dx is xD+1.

Example 38. Let a= a(x) be some function.

(a) Write the operator Da in normal form [normal form means as in (1)].

(b) Write the operator D2a in normal form.

Solution.

(a) (Da)f(x)= d

dx
[a(x) f(x)] = a0(x)f(x)+ a(x)f 0(x)= (a0+ aD)f(x)

Hence, Da= aD+ a0.

(b) (D2a)f(x)=
d2

dx2
[a(x) f(x)] =

d

dx
[a0(x)f(x)+ a(x)f 0(x)]= a00(x)f(x)+ 2a0(x)f 0(x)+ a(x)f 00(x)

= (a00+2a0D+ aD2)f(x)

Hence, D2a= aD2+2a0D+ a00.
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Notes for Lecture 6 Fri, 1/31/2025

Example 39. (review) Let a= a(x) be some function.

(a) Write the operator Da in normal form [normal form means as in (1)].

(b) Write the operator D2a in normal form.

Solution.

(a) (Da)f(x)= d

dx
[a(x) f(x)] = a0(x)f(x)+ a(x)f 0(x)= (a0+ aD)f(x)

Hence, Da= aD+ a0.

(b) (D2a)f(x)=
d2

dx2
[a(x) f(x)] =

d

dx
[a0(x)f(x)+ a(x)f 0(x)]= a00(x)f(x)+ 2a0(x)f 0(x)+ a(x)f 00(x)

= (a00+2a0D+ aD2)f(x)

Hence, D2a= aD2+2a0D+ a00.
Alternatively. We can also useDa=aD+a0 from the previous part and work with the operators directly:
D2a=D(Da)=D(aD+ a0)=DaD+Da0=(aD+ a0)D+ a0D+ a00= aD2+2a0D+ a00.

Example 40. Suppose that a and b depend on x. Expand (D+ a)(D+ b) in normal form.

Solution. (D+ a)(D+ b)=D2+Db+ aD+ ab=D2+(bD+ b0)+ aD+ ab=D2+(a+ b)D+ ab+ b0

Comment. Of course, if b is a constant, then b0=0 and we just get the familiar expansion.
Comment. At this point, it is not surprising that, in general, (D+ a)(D+ b)=/ (D+ b)(D+ a).

Example 41. Suppose we want to factor D2+ pD+ q as (D+a)(D+ b). [p; q; a; b depend on x]

(a) Spell out equations to find a and b.

(b) Find all factorizations of D2. [An obvious one is D2=D �D but there are others!]

Solution.

(a) Matching coefficients with (D+a)(D+ b)=D2+(a+ b)D+ab+ b0 (we expanded this in the previous
example), we find that we need

p= a+ b; q= ab+ b0:

Equivalently, a= p¡ b and q= (p¡ b)b+ b0. The latter is a nonlinear (!) DE for b. Once solved for b,
we obtain a as a= p¡ b.

(b) This is the case p= q=0. The DE for b becomes b0= b2.
Because it is separable (show all details!), we find that b(x)= 1

C ¡ x
or b(x)= 0.

Since a=¡b, we obtain the factorizations D2=
�
D¡ 1

C ¡x

��
D+

1

C ¡x

�
and D2=D �D.

Our computations show that there are no further factorizations.

Comment. Note that this example illustrates that factorization of differential operators is not unique!

For instance, D2=D �D and D2=
�
D+

1

x

�
�
�
D¡ 1

x

�
(the case C=0 above).

Comment. In general, the nonlinear DE for b does not have any polynomial or rational solution (or, in fact, any
solution that can be expressed in terms of functions that we are familiar with).
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Solving linear recurrences with constant coefficients

Motivation: Fibonacci numbers

The numbers 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; ::: are called Fibonacci numbers.
They are defined by the recursion Fn+1=Fn+Fn¡1 and F0=0, F1=1.
How fast are they growing?
Have a look at ratios of Fibonacci numbers: 2

1
= 2, 3

2
= 1.5, 5

3
� 1.667, 8

5
= 1.6, 13

8
= 1.625, 21

13
= 1.615,

34
21
= 1.619, :::

These ratios approach the golden ratio '= 1+ 5
p

2
= 1.618:::

In other words, it appears that lim
n!1

Fn+1
Fn

= 1+ 5
p

2
.

We will soon understand where this is coming from.

We can derive all of that using the same ideas as in the case of linear differential equations. The
crucial observation that we can write the recursion in operator form:

Fn+1=Fn+Fn¡1 is equivalent to (N2¡N ¡ 1)Fn=0.
Here, N is the shift operator: Nan= an+1.

Comment. Recurrence equations are discrete analogs of differential equations.

For instance, recall that f 0(x)= lim
h!0

1
h
[f(x+h)¡ f(x)].

Setting h=1, we get the rough estimate f 0(x)� f(x+1)¡ f(x) so thatD is (roughly) approximated by N ¡1.

Example 42. Find the general solution to the recursion an+1=7an.
Solution. Note that an=7an¡1=7 � 7an¡2= ���=7na0.
Hence, the general solution is an=C � 7n.
Comment. This is analogous to y 0=7y having the general solution y(x)=Ce7x.

Solving recurrence equations

Example 43. (�warmup�) Let the sequence an be defined by the recursion an+2= an+1+6an
and the initial values a0=1, a1=8. Determine the first few terms of the sequence.

Solution. a2= a1+6a0= 14, a3= a2+6a1= 62, a4= 146, :::

Comment. In the next example, we get ready to solve this recursion and to find an explicit formula for the
sequence an.

Example 44. (�warmup�) Find the general solution to the recursion an+2= an+1+6an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 6= (N ¡ 3)(N +2).
Since (N ¡ 3)an=0 has solution an=C � 3n, and since (N +2)an=0 has solution an=C � (¡2)n (compare
previous example), we conclude that the general solution is an=C1 � 3n+C2 � (¡2)n.
Comment. This must indeed be the general solution, because the two degrees of freedom C1; C2 allow us to
match any initial conditions a0=A, a1=B: the two equations C1+C2=A and 3C1¡2C2=B in matrix form

are
�
1 1
3 ¡2

��
C1

C2

�
=
�
A
B

�
, which always has a (unique) solution because det

��
1 1
3 ¡2

��
=¡5=/ 0.
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Notes for Lecture 7 Mon, 2/3/2025

Review. The recurrence an+1=5an has general solution an=C � 5n.
In operator form, the recurrence is (N ¡ 5)an= 0, where p(N) =N ¡ 5 is the characteristic polynomial. The
characteristic root 5 corresponds to the solution 5n.
This is analogous to the case of DEs p(D)y=0 where a root r of p(D) corresponds to the solution erx.

Example 45. (cont'd) Let the sequence an be defined by an+2=an+1+6an and a0=1, a1=8.

(a) Determine the first few terms of the sequence.

(b) Find a formula for an.

(c) Determine lim
n!1

an+1
an

.

Solution.

(a) a2= a1+6a0= 14, a3= a2+6a1= 62, a4= 146, :::

(b) The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 6 has roots 3;¡2.
Hence, an= C1 3

n+ C2 (¡2)n and we only need to figure out the two unknowns C1, C2. We can do
that using the two initial conditions: a0=C1+C2=1, a1=3C1¡ 2C2=8.
Solving, we find C1=2 and C2=¡1 so that, in conclusion, an=2 � 3n¡ (¡2)n.
Comment. Such a formula is sometimes called a Binet-like formula (because it is of the same kind as
the Binet formula for the Fibonacci numbers that we can derive in the same manner).

(c) It follows from our formula that lim
n!1

an+1
an

=3 (because j3j> j¡2j so that 3n dominates (¡2)n).

To see this, we need to realize that, for large n, 3n is much larger than (¡2)n so that we have an�2 �3n

when n is large. Hence, an+1
an

� 2 � 3n+1
2 � 3n =3.

Alternatively, to be very precise, we can observe that (by dividing each term by 3n)

an+1
an

=
2 � 3n+1¡ (¡2)n+1
2 � 3n¡ (¡2)n =

2 � 3+2
�
¡2

3

�n
2 � 1¡

�
¡2

3

�n ¡!as n!1 2 � 3+0
2 � 1¡ 0 =3:

Example 46. Consider the sequence an defined by an+2= an+1+2an and a0=1, a1=8.

(a) Determine the first few terms of the sequence.

(b) Find a formula for an.

(c) Determine lim
n!1

an+1
an

.

Solution.

(a) a2= 10, a3= 26

(b) The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 2 has roots 2;¡1.
Hence, an= C1 2

n+ C2 (¡1)n and we only need to figure out the two unknowns C1, C2. We can do
that using the two initial conditions: a0=C1+C2=1, a1=2C1¡C2=8.
Solving, we find C1=3 and C2=¡2 so that, in conclusion, an=3 � 2n¡ 2(¡1)n.

(c) It follows from the formula an=3 � 2n¡ 2(¡1)n that lim
n!1

an+1
an

=2.

Comment. In fact, this already follows from an = C1 2
n + C2 (¡1)n provided that C1 =/ 0. Since

an=C2 (¡1)n (the case C1=0) is not compatible with a0=1, a1=8, we can conclude lim
n!1

an+1
an

=2

without computing the actual values of C1 and C2.
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Example 47. (�warmup�) Find the general solution to the recursion an+2=4an+1¡ 4an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡ 4N +4 has roots 2; 2.
So a solution is 2n and, from our discussion of DEs, it is probably not surprising that a second solution is n �2n.
Hence, the general solution is an=C1 � 2n+C2 �n � 2n=(C1+C2n) � 2n.
Comment. This is analogous to (D¡ 2)2y 0=0 having the general solution y(x)= (C1+C2x)e

2x.
Check! Let's check that an=n � 2n indeed satisfies the recursion (N ¡ 2)2an=0.

(N ¡ 2)n � 2n=(n+1)2n+1¡ 2n � 2n=2n+1, so that (N ¡ 2)2n � 2n=(N ¡ 2)2n+1=0.

Combined, we obtain the following analog of Theorem 20 for recurrence equations (RE):

Comment. Sequences that are solutions to such recurrences are called constant recursive or C-finite.

Theorem 48. Consider the homogeneous linear RE with constant coefficients p(N)an=0.

� If r is a root of the characteristic polynomial and if k is its multiplicity, then k (inde-
pendent) solutions of the RE are given by njrn for j=0; 1; :::; k¡ 1.

� Combining these solutions for all roots, gives the general solution.

Moreover. If r is the sole largest root by absolute value among the roots contributing to an, then an�Crn
(if r is not repeated�what if it is?) for large n. In particular, it follows that

lim
n!1

an+1
an

= r:

Advanced comment. Things can get weird if there are several roots of the same absolute value. Consider, for
instance, the case an=2n+(¡2)n. Can you see that, in this case, the limit limn!1

an+1
an

doesn't even exist?

Example 49. Find the general solution to the recursion an+3=2an+2+ an+1¡ 2an.
Solution. The recursion can be written as p(N)an= 0 where p(N) =N3¡ 2N2¡N + 2 has roots 2; 1;¡1.
(Here, we may use some help from a computer algebra system to find the roots.)
Hence, the general solution is an=C1 � 2n+C2+C3 � (¡1)n.

Example 50. Find the general solution to the recursion an+3=3an+2¡ 4an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N3¡3N2+4 has roots 2;2;¡1. (Again,
we may use some help from a computer algebra system to find the roots.)
Hence, the general solution is an=(C1+C2n) � 2n+C3 � (¡1)n.
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Theorem 51. (Binet's formula) Fn=
1

5
p
h�

1+ 5
p

2

�n
¡
�
1¡ 5

p

2

�ni
Proof. The recursion Fn+1=Fn+Fn¡1 can be written as p(N)an=0 where p(N)=N2¡N ¡ 1 has roots

�1=
1+ 5

p

2
� 1.618; �2=

1¡ 5
p

2
�¡0.618:

Hence, Fn=C1 ��1n+C2 ��2n and we only need to figure out the two unknowns C1, C2. We can do that using

the two initial conditions: F0=C1+C2=
!
0, F1=C1 �

1+ 5
p

2
+C2 �

1¡ 5
p

2
=
!
1.

Solving, we find C1=
1

5
p and C2=¡ 1

5
p so that, in conclusion, Fn=

1

5
p (�1

n¡�2n), as claimed. �

Comment. For large n, Fn�
1

5
p �1

n (because �2
n becomes very small). In fact, Fn= round

�
1

5
p
�
1+ 5

p

2

�n�
.

Back to the quotient of Fibonacci numbers. In particular, because �1
n dominates �2

n, it is now transparent
that the ratios Fn+1

Fn
approach �1=

1+ 5
p

2
� 1.618. To be precise, note that

Fn+1
Fn

=

1

5
p (�1

n+1¡�2
n+1)

1

5
p (�1

n¡�2n)
=
�1
n+1¡�2

n+1

�1
n¡�2n

=
�1¡�2

�
�2
�1

�n
1¡

�
�2
�1

�n ¡!n!1 �1¡ 0
1¡ 0 =�1:

In fact, it follows from �2 < 0 that the ratios Fn+1
Fn

approach �1 in the alternating fashion that we observed
numerically earlier. Can you see that?

Example 52. Consider the sequence an defined by an+2 = 4an+1 + 9an and a0 = 1, a1 = 2.
Determine lim

n!1

an+1
an

.

Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡4N ¡9 has roots 4� 52
p

2
�5.6056;

¡1.6056. Both roots have to be involved in the solution in order to get integer values.
We conclude that lim

n!1

an+1
an

=2+ 13
p

� 5.6056 (because j5.6056j> j¡1.6056j).

Example 53. (extra) Consider the sequence an defined by an+2 = 2an+1 + 4an and a0 = 0,
a1=1. Determine lim

n!1

an+1
an

.

First few terms of sequence. 0; 1; 2; 8; 24; 80; 256; 832; :::
These are actually related to Fibonacci numbers. Indeed, an= 2n¡1Fn. Can you prove this directly from the
recursions? Alternatively, this follows from comparing the Binet-like formulas.

Solution. Proceeding as in the previous example, we find lim
n!1

an+1
an

=1+ 5
p
� 3.23607.

Comment. With just a little more work, we find the Binet-like formula an=
(1+ 5

p
)n¡ (1¡ 5

p
)n

2 5
p .
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Notes for Lecture 8 Wed, 2/5/2025

Crash course: Eigenvalues and eigenvectors

If Ax=�x (and x=/ 0), then x is an eigenvector of A with eigenvalue � (just a number).

Note that, for the equation Ax=�x to make sense, A needs to be a square matrix (i.e. n�n).

Key observation:

Ax=�x
() Ax¡�x=0
() (A¡�I)x=0
This homogeneous system has a nontrivial solution x if and only if det(A¡�I)= 0.

To find eigenvectors and eigenvalues of A:

(a) First, find the eigenvalues � by solving det(A¡�I)= 0.
det(A¡�I) is a polynomial in �, called the characteristic polynomial of A.

(b) Then, for each eigenvalue �, find corresponding eigenvectors by solving (A¡�I)x=0.

Example 54. Determine the eigenvalues and eigenvectors of A=
�
8 ¡10
5 ¡7

�
.

Solution. The characteristic polynomial is:

det(A¡�I)=det
��

8¡� ¡10
5 ¡7¡�

��
=(8¡�)(¡7¡�)+ 50=�2¡�¡ 6= (�¡ 3)(�+2)

Hence, the eigenvalues are �=3 and �=¡2.

� To find an eigenvector for �=3, we need to solve
�
5 ¡10
5 ¡10

�
x=0.

Hence, x=
�
2
1

�
is an eigenvector for �=3.

� To find an eigenvector for �=¡2, we need to solve
�
10 ¡10
5 ¡5

�
x=0.

Hence, x=
�
1
1

�
is an eigenvector for �=¡2.

Check!
�
8 ¡10
5 ¡7

��
2
1

�
=
�
6
3

�
=3 �

�
2
1

�
and

�
8 ¡10
5 ¡7

��
1
1

�
=
�
¡2
¡2

�
=¡2 �

�
1
1

�
On the other hand, a random other vector like

�
1
2

�
is not an eigenvector:

�
8 ¡10
5 ¡7

��
1
2

�
=
�
¡12
¡9

�
=/ �

�
1
2

�
.

Example 55. (homework) Determine the eigenvalues and eigenvectors of A=
�
1 ¡6
1 ¡4

�
.

Solution. (final answer only) x=
�
2
1

�
is an eigenvector for �=¡2, and x=

�
3
1

�
is an eigenvector for �=¡1.
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Preview: A system of recurrence equations equivalent to the Fibonacci recurrence

Example 56. We model rabbit reproduction as follows.

Each month, every pair of adult rabbits pro-
duces one pair of baby rabbit as offspring.
Meanwhile, it takes baby rabbits one month
to mature to adults.

adult rabbit baby rabbit
1

1

1

Comment. In this simplified model, rabbits always come in male/female pairs and no rabbits die. Though these
features might make it sound fairly useless, the model may have some merit when describing populations under
ideal conditions (unlimited resources) and over short time (no deaths).
Historical comment. The question how many rabbits there are after one year, when starting out with a pair of
baby rabbits is famously included in the 1202 textbook of the Italian mathematician Leonardo of Pisa, known
as Fibonacci.

If we start with one baby rabbit pair, how many adult rabbit pairs are there after n months?
Solution. Let an be the number of adult rabbit pairs after n months. Likewise, bn is the number of baby rabbit
pairs. The transition from one month to the next is given by an+1=an+ bn and bn+1=an. Using bn=an¡1
(from the second equation) in the first equation, we obtain an+1= an+ an¡1.
The initial conditions are a0=0 and a1=1 (the latter follows from b0=1).
It follows that the number bn of adult rabbit pairs are precisely the Fibonacci numbers Fn.
Comment. Note that the transition from one month to the next is described by in matrix-vector form as�

an+1
bn+1

�
=

�
an+ bn
an

�
=

�
1 1
1 0

��
an
bn

�
:

Writing an=
�
an
bn

�
, this becomes an+1=

�
1 1
1 0

�
an with a0=

�
0
1

�
.

Consequently, an=
�
1 1
1 0

�n
a0=

�
1 1
1 0

�n� 0
1

�
.

Looking ahead. Can you see how, starting with the Fibonacci recurrence Fn+2= Fn+1+ Fn,
we can arrive at this same system?

Solution. Set an=
�
Fn+1
Fn

�
. Then an+1=

�
Fn+2
Fn+1

�
=
�
Fn+1+Fn
Fn+1

�
=
�
1 1
1 0

��
Fn+1
Fn

�
=
�
1 1
1 0

�
an.
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Systems of recurrence equations

Example 57. (review) Consider the sequence an defined by an+2= 4an¡ 3an+1 and a0= 1,
a1=2. Determine lim

n!1

an+1
an

.

Solution. The recursion can be written as p(N)an=0 where p(N)=N2+3N ¡4 has roots 1;¡4. Hence, the
general solution is an=C1+C2 � (¡4)n. We can see that both roots have to be involved in the solution (in other
words, C1=/ 0 and C2=/ 0) because an=C1 and an=C2 � (¡4)n are not consistent with the initial conditions.

We conclude that lim
n!1

an+1
an

=¡4 (because j¡4j> j1j).

Example 58. Write the (second-order) RE an+2=4an¡3an+1, with a0=1, a1=2, as a system
of (first-order) recurrences.

Solution. Write bn= an+1.

Then, an+2=4an¡ 3an+1 translates into the first-order system
�
an+1= bn
bn+1=4an¡ 3bn

.

Let an=
�
an
bn

�
. Then, in matrix form, the RE is an+1=

�
0 1
4 ¡3

�
an, with a0=

�
1
2

�
.

Equivalently. Write an=
�

an
an+1

�
. Then we obtain the above system as

an+1=

�
an+1
an+2

�
=

�
an+1

4an¡ 3an+1

�
=

�
0 1
4 ¡3

��
an
an+1

�
=

�
0 1
4 ¡3

�
an; a0=

�
1
2

�
:

Comment. It follows that an =
�
0 1
4 ¡3

�n
a0 =

�
0 1
4 ¡3

�n� 1
2

�
. Solving (systems of) REs is equivalent to

computing powers of matrices!

Comment. We could also write an=
�
an+1
an

�
(with the order of the entries reversed). In that case, the system is

an+1=

�
an+2
an+1

�
=

�
4an¡ 3an+1

an+1

�
=

�
¡3 4
1 0

��
an+1
an

�
=

�
¡3 4
1 0

�
an; a0=

�
2
1

�
:

Comment. Recall that the characteristic polynomial of a matrixM is det(M ¡�I). Compute the characteristic
polynomial of both M =

�
0 1
4 ¡3

�
and M =

�
¡3 4
1 0

�
. In both cases, we get �2 + 3� ¡ 4, which matches the

polynomial p(N) (also called characteristic polynomial!) in the previous example. This will always happen and
explains why both are referred to as the characteristic polynomial.

Example 59. Write an+3¡ 4an+2+ an+1+6an=0 as a system of (first-order) recurrences.

Solution. Write an=

24 an
an+1
an+2

35. Then we obtain the system

an+1=

24 an+1
an+2
an+3

35=
24 an+1

an+2
4an+2¡ an+1¡ 6an

35=
24 0 1 0

0 0 1
¡6 ¡1 4

3524 an
an+1
an+2

35=
24 0 1 0

0 0 1
¡6 ¡1 4

35an:
In summary, the RE in matrix form is an+1=Man with M the matrix above.

Important comment. Given a first-order system an+1=Man, it is clear that the solution satisfies an=Mna0.
If you know how to compute matrix powers Mn, this means you can solve recurrences! On the other hand, we
will proceed the other way around. We solve the recurrence and then use that to determine Mn.
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Notes for Lecture 9 Fri, 2/7/2025

Solving systems of recurrence equations

The following summarizes how we can solve systems of recurrence equations using eigenvectors.
As a bonus, we obtain a way to compute matrix powers.
Each step is spelled out in Example 60 below.

(solving systems of REs) To solve an+1=Man, determine the eigenvectors of M .

� Each �-eigenvector v provides a solution: an=v�n [assuming that �=/ 0]

� If there are enough eigenvectors, these combine to the general solution.

In that case, we get a fundamental matrix (solution) �n by placing each solution
vector into one column of �n.

� If desired, we can compute the matrix powersMn using any fundamental matrix �n as

Mn=�n�0
¡1:

Note that Mn is the unique matrix solution to an+1=Man with a0= I (the identity matrix).

Application: the unique solution to an+1=Man, a0= c is given by an=Mnc.

Why? If an=v�n for a �-eigenvector v, then an+1=v�n+1 and Man=Mv�n=�v ��n=v�n+1.
Where is this coming from? When solving single linear recurrences, we found that the basic solutions are of the
form crn where r=/ 0 is a root of the characteristic polynomials. To solve an+1=Man, it is therefore natural
to look for solutions of the form an=cr

n (where c=
�
c1
c2

�
). Note that an+1= crn+1= ran.

Plugging into an+1=Man we find crn+1=Mcrn.
Cancelling rn (just a nonzero number!), this simplifies to rc=Mc.
In other words, an=crn is a solution if and only if c is an r-eigenvector of M .

Not enough eigenvectors? In that case, we know what to do as well (at least in principle): instead of looking
only for solutions of the type an=v�n, we also need to look for solutions of the type an=(vn+w)�n. Note
that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Matrix solutions. Amatrix�n is amatrix solution toan+1=Man if�n+1=M�n. �n being a matrix solution
is equivalent to each column of �n being a normal (vector) solution. If the general solution of an+1 =Man
can be obtained as the linear combination of the columns of �n, then �n is a fundamental matrix solution.

Why can we compute matrix powers this way? Recall that, given a first-order system an+1 =Man, it is
clear that the solution satisfies an=Mna0. Likewise, a fundamental matrix solution �n to the same recurrence
satisfies �n=Mn�0. Multiplying both sides by �0

¡1 (on the right!) we conclude that �n�0
¡1=Mn.

Already know how to compute matrix powers? If you have taken linear algebra classes, you may have learned
that matrix powers Mn can be computed by diagonalizing the matrix M . The latter hinges on computing
eigenvalues and eigenvectors of M as well. Compare the two approaches!

Example 60. Let M =
�
8 ¡10
5 ¡7

�
.

(a) Determine the general solution to an+1=Man.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

(d) Solve an+1=Man, a0=
�
1
2

�
.
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Solution.

(a) Recall that each �-eigenvector v of M provides us with a solution: an=v�n

We computed in Example 54 that
�
2
1

�
is an eigenvector for �=3, and

�
1
1

�
is an eigenvector for �=¡2.

Hence, the general solution is C1
�
2
1

�
3n+C2

�
1
1

�
(¡2)n.

(b) Note that we can write the general solution as

an=C1
�
2
1

�
3n+C2

�
1
1

�
(¡2)n=

�
2 � 3n (¡2)n
3n (¡2)n

��
C1

C2

�
.

We call �n=
�
2 � 3n (¡2)n
3n (¡2)n

�
the corresponding fundamental matrix (solution).

Note that our general solution is precisely �nc with c=
�
C1

C2

�
.

Observations.

(a) The columns of �n are (independent) solutions of the system.

(b) �n solves the RE itself: �n+1=M�n.
[Spell this out in this example! That �n solves the RE follows from the definition of matrix
multiplication.]

(c) It follows that �n=Mn�0. Equivalently, �n�0
¡1=Mn. (See next part!)

(c) Note that �0=
�
2 1
1 1

�
, so that �0

¡1=
�

1 ¡1
¡1 2

�
. It follows that

Mn=�n�0
¡1=

�
2 � 3n (¡2)n
3n (¡2)n

��
1 ¡1
¡1 2

�
=

�
2 � 3n¡ (¡2)n ¡2 � 3n+2(¡2)n
3n¡ (¡2)n ¡3n+2(¡2)n

�
:

Check. Let us verify the formula for Mn in the cases n=0 and n=1:

M0=
�
2¡ 1 ¡2+2
1¡ 1 ¡1+2

�
=
�
1 0
0 1

�
M1=

�
2 � 3¡ (¡2) ¡2 � 3+2(¡2)
3¡ (¡2) ¡3+ 2(¡2)

�
=
�
8 ¡10
5 ¡7

�

(d) an=Mna0=
�
2 � 3n¡ (¡2)n ¡2 � 3n+2(¡2)n
3n¡ (¡2)n ¡3n+2(¡2)n

��
1
2

�
=
�
¡2 � 3n+3(¡2)n
¡3n+3(¡2)n

�
Sage. Once we are comfortable with these computations, we can let Sage do them for us.

>>> M = matrix([[8,-10],[5,-7]])

>>> M^2�
14 ¡10
5 ¡1

�
Verify that this matrix matches what our formula for Mn produces for n=2. In order to reproduce the general
formula for Mn, we need to first define n as a symbolic variable:

>>> n = var('n')

>>> M^n�
2 � 3n¡ (¡2)n ¡2 � 3n+2 (¡2)n
3n¡ (¡2)n ¡3n+2 (¡2)n

�
Note that this indeed matches our earlier formula. Can you see how we can read off the eigenvalues and
eigenvectors of M from this formula for Mn? Of course, Sage can readily compute these for us directly using,
for instance, M.eigenvectors_right(). Try it! Can you interpret the output?
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Example 61. (review) Write the (second-order) RE an+2=an+1+2an, with a0=0, a1=1, as
a system of (first-order) recurrences.

Solution. If an=
�

an
an+1

�
, then an+1=

�
an+1
an+2

�
=
�

an+1
an+1+2an

�
=
�
0 1
2 1

�
an with a0=

�
0
1

�
.

Example 62. Let M =
�
0 1
2 1

�
.

(a) Determine the general solution to an+1=Man.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

(d) Solve an+1=Man, a0=
�
0
1

�
.

Solution.

(a) Recall that each �-eigenvector v of M provides us with a solution: namely, an=v�n.

The characteristic polynomial is: det(A¡�I)=det
��
¡� 1
2 1¡�

��
=�2¡�¡ 2= (�¡ 2)(�+1).

Hence, the eigenvalues are �=2 and �=¡1.

� �=2: Solving
�
¡2 1
2 ¡1

�
v=0, we find that v=

�
1
2

�
is an eigenvector for �=2.

� �=¡1: Solving
�
1 1
2 2

�
v=0, we find that v=

�
¡1
1

�
is an eigenvector for �=¡1.

Hence, the general solution is C1
�
1
2

�
2n+C2

�
¡1
1

�
(¡1)n.

(b) Note that C1
�
1
2

�
2n+C2

�
¡1
1

�
(¡1)n=

�
2n ¡(¡1)n
2 � 2n (¡1)n

��
C1

C2

�
.

Hence, a fundamental matrix solution is �n=
�

2n ¡(¡1)n
2 � 2n (¡1)n

�
.

Comment. Other choices are possible and natural. For instance, the order of the two columns is based
on our choice of starting with �=2. Also, the columns can be scaled by any constant (for instance, using
¡v instead of v for �=¡1 above, we end up with the same�n but with the second column scaled by¡1).
In general, if �n is a fundamental matrix solution, then so is �nC where C is an invertible 2� 2 matrix.

(c) We computeMn=�n�0
¡1 using �n=

�
2n ¡(¡1)n
2 � 2n (¡1)n

�
. Since �0

¡1=
�
1 ¡1
2 1

�¡1
=
1

3

�
1 1
¡2 1

�
, we have

Mn=�n�0
¡1=

�
2n ¡(¡1)n
2 � 2n (¡1)n

�
1
3

�
1 1
¡2 1

�
=
1
3

�
2n+2(¡1)n 2n¡ (¡1)n
2 � 2n¡ 2(¡1)n 2 � 2n+(¡1)n

�
:

(d) an=Mna0=
1

3

�
2n+2(¡1)n 2n¡ (¡1)n
2 � 2n¡ 2(¡1)n 2 � 2n+(¡1)n

��
0
1

�
=
1

3

�
2n¡ (¡1)n
2 � 2n+(¡1)n

�

Alternative solution of the first part. We saw in Example 61 that this system can be obtained from an+2=

an+1+2an if we set a=
�

an
an+1

�
. In Example 46, we found that this RE has solutions an=2n and an=(¡1)n.

Correspondingly, an+1=
�
0 1
2 1

�
an has solutions an=

"
2n

2n+1

#
and an=

"
(¡1)n
(¡1)n+1

#
.

These combine to the general solution C1
"

2n

2n+1

#
+C2

"
(¡1)n
(¡1)n+1

#
(equivalent to our solution above).

Alternative for last part. Solve the RE from Example 61 to find an=
1

3
(2n¡(¡1)n). The above is an=

�
an
an+1

�
.
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Notes for Lecture 10 Mon, 2/10/2025

We have learned how to compute Mn for a matrix M using its eigenvalues and eigenvectors, as
well as solve the system an+1=Man. For diagonal matrices, all this is much simpler:

Example 63. If M =

266664
3
¡2

5
1

377775, what is Mn?

Also: what is the solution to an+1=Man?

Comment. Entries that are not printed are meant to be zero (to make the structure of the 4� 4 matrix more
visibly transparent).

Solution. Mn=

266664
3n

(¡2)n
5n

1

377775
If this isn't clear to you, multiply out M2. What happens?

Also: an+1=Man with an=

266664
an
bn
cn
dn

377775 decouples into
an+1=3an
bn+1=¡2bn
cn+1=5cn
dn+1= dn

which is solved by an=

266664
an
bn
cn
dn

377775=
266664

3na0
(¡2)nb0
5nc0
d0

377775.

Example 64. (extra practice)

(a) Write the recurrence an+3¡ 4an+2+an+1+6an=0 as a system an+1=Man of (first-
order) recurrences.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

Solution.

(a) If an=

24 an
an+1
an+2

35, then the RE becomes an+1=Man with M =

24 0 1 0
0 0 1
¡6 ¡1 4

35.
(b) Because we started with a single (third-order) equation, we can avoid computing eigenvectors and eigen-

values (indeed, we will find these as a byproduct).

By factoring the characteristic equation N3¡ 4N2+N +6=(N ¡ 3)(N ¡ 2)(N +1), we find that the
characteristic roots are 3; 2;¡1 (these are also precisely the eigenvalues of M).
Hence, an=C1 � 3n+C2 � 2n+C3 � (¡1)n is the general solution to the initial RE.

Correspondingly, a fundamental matrix solution of the system is �n=

24 3n 2n (¡1)n
3 � 3n 2 � 2n ¡(¡1)n
9 � 3n 4 � 2n (¡1)n

35.
Note. This tells us that

24 1
3
9

35 is a 3-eigenvector,
24 1
2
4

35a 2-eigenvector, and
24 1
¡1
1

35a ¡1-eigenvector of M .

(c) Since �n+1=M�n, we have �n=Mn�0 so that Mn=�n�0
¡1. This allows us to compute that:

Mn=
1
12

24 ¡6 � 3n+ 12 � 2n+6(¡1)n ¡3 � 3n+8 � 2n¡ 5(¡1)n 3 � 3n¡ 4 � 2n+(¡1)n
¡18 � 3n+ 24 � 2n¡ 6(¡1)n ::: :::
¡54 � 3n+ 48 � 2n+6(¡1)n ::: :::

35
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Systems of differential equations

Review. Check out Examples 61 and 62 again. Below we will repeat the same steps, replacing
recurrences with differential equations as well as �n with e�x.

Example 65. Write the (second-order) initial value problem y 00= y 0+2y, y(0)=0, y 0(0)=1 as
a first-order system.

Solution. If y=
�
y
y 0

�
, then y0=

�
y 0

y 00

�
=
�

y 0

y 0+2y

�
=
�
0 1
2 1

��
y
y 0

�
=
�
0 1
2 1

�
y with y(0)=

�
0
1

�
.

This is exactly how we proceeded in Example 61.

Homework. Solve this IVP to find y(x)= 1

3
(e2x¡ e¡x). Then compare with the next example.

Example 66. (preview) Let M =
�
0 1
2 1

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Solve y 0=My, y(0)=
�
0
1

�
.

Solution. In Example 62, we only need to replace 2n by e2x (root 2) and (¡1)n by e¡x (root ¡1)!

(a) The general solution is C1
�
1
2

�
e2x+C2

�
¡1
1

�
e¡x.

(b) A fundamental matrix solution is �(x)=
"

e2x ¡e¡x
2 � e2x e¡x

#
.

(c) y(x)= 1

3

"
e2x¡ e¡x
2 � e2x+ e¡x

#

Preview. The special fundamental matrix Mn will be replaced by eMx, the matrix exponential.

Example 67. Write the (third-order) differential equation y 000 = 3y 00 ¡ 2y 0 + y as a system of
(first-order) differential equations.

Solution. If y=

2664 y
y 0

y 00

3775, then y0=24 y 0

y 00

y 000

35=
24 y 0

y 00

3y 00¡ 2y 0+ y

35=
24 0 1 0
0 0 1
1 ¡2 3

3524 y
y 0

y 00

35=
24 0 1 0
0 0 1
1 ¡2 3

35y.

For short, y0=

24 0 1 0
0 0 1
1 ¡2 3

35y
Comment. This is one reason why we care about systems of DEs, even if we work with just one function.

Example 68. Consider the following system of (second-order) initial value problems:

y1
00=2y10 ¡ 3y20 +7y2
y2
00=4y10 + y2

0 ¡ 5y1
y1(0)=2; y10(0)= 3; y2(0)=¡1; y20(0)= 1

Write it as a first-order initial value problem in the form y 0=My, y(0)= y0.
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Solution. If y=

26666664
y1
y2
y1
0

y2
0

37777775, then y0=
266664
y1
0

y2
0

y1
00

y2
00

377775=
266664

y1
0

y2
0

2y1
0¡ 3y20+7y2

4y1
0+ y2

0¡ 5y1

377775=
266664

0 0 1 0
0 0 0 1
0 7 2 ¡3
¡5 0 4 1

377775
266664
y1
y2
y1
0

y2
0

377775=
266664

0 0 1 0
0 0 0 1
0 7 2 ¡3
¡5 0 4 1

377775y.

For short, the system translates into y0=

266664
0 0 1 0
0 0 0 1
0 7 2 ¡3
¡5 0 4 1

377775y with y(0)=

266664
2
¡1
3
1

377775.

Solving systems of differential equations

We can solve the system y 0=My exactly as we solved an+1=Man.

The only difference is that we replace each �n (for characteristic root / eigenvalue �) with e�x. In fact, as shown
in the examples below, we can translate back and forth at any stage.

(solving systems of DEs) To solve y 0=My, determine the eigenvectors of M .

� Each �-eigenvector v provides a solution: y(x)=ve�x

� If there are enough eigenvectors, these combine to the general solution.

In that case, we get a fundamental matrix (solution) �(x) by placing each solution
vector into one column of �(x).

� If desired, we can find the matrix exponential eMx using any fundamental matrix �(x):

eMx=�(x)�(0)¡1:

Note that eMx is the unique matrix solution to y0=My, y(0)= I (the identity matrix).

Application: the unique solution to y 0=My, y(0)= c is given by y(x)= eMxc.

Note. Unlike with Mn, it might not be clear what the matrix exponential eMx really is. One way to think
about it is that we are defining eMx as the solution to the IVP y0=My, y(0) = I. This is equivalent to how
one can define the ordinary exponential ex as the solution to y0= y, y(0)= 1.
[In a little bit, we will also discuss how to think about the matrix exponential eMx using power series.]

Comment. If there are not enough eigenvectors, then we knowwhat to do (at least in principle): instead of looking
only for solutions of the type y(x)=ve�x, we also need to look for solutions of the type y(x)= (vx+w)e�x.
Note that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Why does this work? Compare this to our method of solving systems of REs and for computing matrix powers
Mn. The above conclusion about systems of DEs can be deduced along the same lines as what we did for REs:

� For instance, for the first part, let us look for solutions of y0=My of the form y(x)=ve�x.
Note that y0=�ve�x=�y. Plugging into y0=My, we find �y=My.

In other words, y(x)=ve�x is a solution if and only if v is a �-eigenvector of M .

� If �(x) is a fundamental matrix solution, then so is 	(x)=�(x)C for every constant matrix C. (Why?!)
Therefore, 	(x)=�(x)�(0)¡1 is a fundamental matrix solution with 	(0)=�(0)�(0)¡1= I.

But eMx is defined to be the unique such solution, so that 	(x)= eMx.
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Example 69. (homework) Let M =
�
¡1 6
¡1 4

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�
1
1

�
.

(e) Compute Mn.

(f) Solve an+1=Man with a0=
�
1
1

�
.

Solution.

(a) We determine the eigenvectors of M . The characteristic polynomial is:

det(M ¡�I)=det
��
¡1¡� 6
¡1 4¡�

��
=(¡1¡�)(4¡�)+ 6=�2¡ 3�+2= (�¡ 1)(�¡ 2)

Hence, the eigenvalues are �=1 and �=2.

� �=1: Solving
�
¡2 6
¡1 3

�
v=0, we find that v=

�
3
1

�
is an eigenvector for �=1.

� �=2: Solving
�
¡3 6
¡1 2

�
v=0, we find that v=

�
2
1

�
is an eigenvector for �=2.

Hence, the general solution is C1
�
3
1

�
ex+C2

�
2
1

�
e2x.

(b) The corresponding fundamental matrix solution is �=
"
3ex 2e2x

ex e2x

#
.

(c) Note that �(0)=
�
3 2
1 1

�
, so that �(0)¡1=

�
1 ¡2
¡1 3

�
. It follows that

eMx=�(x)�(0)¡1=

"
3ex 2e2x

ex e2x

#�
1 ¡2
¡1 3

�
=

"
3ex¡ 2e2x ¡6ex+6e2x

ex¡ e2x ¡2ex+3e2x

#
:

(d) The solution to the IVP is y(x)= eMx
�
1
1

�
=

"
3ex¡ 2e2x ¡6ex+6e2x

ex¡ e2x ¡2ex+3e2x

#�
1
1

�
=

"
¡3ex+4e2x

¡ex+2e2x

#
.

Note. If we hadn't already computed eMx, we would use the general solution and solve for the appropriate
values of C1 and C2. Do it that way as well!

(e) From the first part, it follows that an+1=Man has general solution C1
�
3
1

�
+C2

�
2
1

�
2n.

(Note that 1n=1.)

The corresponding fundamental matrix solution is �n=
�
3 2 � 2n
1 2n

�
.

As above, �0=
�
3 2
1 1

�
, so that �(0)¡1=

�
1 ¡2
¡1 3

�
and

Mn=�n�0
¡1=

�
3 2 � 2n
1 2n

��
1 ¡2
¡1 3

�
=

�
3¡ 2 � 2n ¡6+6 � 2n
1¡ 2n ¡2+3 � 2n

�
:

Important. Compare with our computation for eMx. Can you see how this was basically the same
computation? Write down Mn directly from eMx.

(f) The (unique) solution is an=Mn
�
1
1

�
=
�
3¡ 2 � 2n ¡6+6 � 2n
1¡ 2n ¡2+3 � 2n

��
1
1

�
=
�
¡3+4 � 2n
¡1+2 � 2n

�
.

Important. Again, compare with the earlier IVP! Without work, we can write down one from the other.

Armin Straub
straub@southalabama.edu

28



We purposefully omit details of some computations in the next example to highlight how it
proceeds along the same lines as Example 60.
Important. In fact, we can translate back and forth (without additional computations) by simply replacing 3n

and (¡2)n by e3x and e¡2x.

Example 70. (extra practice) Let M =
�
8 ¡10
5 ¡7

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�
0
1

�
.

Solution. (See Example 60 for more details on the analogous computations.)

(a) Recall that each �-eigenvector v of M provides us with a solution: namely, y(x)=ve�x.

We computed earlier that
�
2
1

�
is an eigenvector for �=3, and

�
1
1

�
is an eigenvector for �=¡2.

Hence, the general solution is C1
�
2
1

�
e3x+C2

�
1
1

�
e¡2x.

(b) The corresponding fundamental matrix solution is �(x)=

"
2 � e3x e¡2x

e3x e¡2x

#
.

[Note that our general solution is precisely �(x)
�
C1

C2

�
.]

(c) Since �(0)=
�
2 1
1 1

�
, we have �(0)¡1=

�
1 ¡1
¡1 2

�
. It follows that

eMx=�(x)�(0)¡1=

"
2 � e3x e¡2x

e3x e¡2x

#�
1 ¡1
¡1 2

�
=

"
2 � e3x¡ e¡2x ¡2 � e3x+2e¡2x

e3x¡ e¡2x ¡e3x+2e¡2x

#
:

Check. Let us verify the formula for eMx in the simple case x=0: eM0=
�
2¡ 1 ¡2+2
1¡ 1 ¡1+2

�
=
�
1 0
0 1

�

(d) The solution to the IVP is y(x)= eMx
�
0
1

�
=

"
¡2 � e3x+2e¡2x

¡e3x+2e¡2x

#
(the second column of eMx).

Sage. We can compute the matrix exponential in Sage as follows:

>>> M = matrix([[8,-10],[5,-7]])

>>> exp(M*x) 
(2 e(5 x)¡ 1) e(¡2 x) ¡2 (e(5 x)¡ 1) e(¡2 x)

(e(5 x)¡ 1) e(¡2 x) ¡(e(5 x)¡ 2) e(¡2 x)

!
Note that this indeed matches the result of our computation.
[By the way, the variable x is pre-defined as a symbolic variable in Sage. That's why, unlike for n in the
computation of Mn, we did not need to use x = var('x') first.]
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Notes for Lecture 11 Wed, 2/12/2025

Example 71. Suppose that eMx= 1

10

"
ex+9e2x 3ex¡ 3e2x
3ex¡ 3e2x 9ex+ e2x

#
.

(a) Without doing any computations, determine Mn.

(b) What is M?

(c) Without doing any computations, determine the eigenvalues and eigenvectors of M .

(d) From those, write down a simple fundamental matrix solution to y 0=My.

(e) From that fundamental matrix solution, how can we compute eMx? (If we didn't know it already . . . )

(f) Having computed eMx, what is a simple check that we can (should!) make?

Solution.

(a) Since ex and e2x correspond to eigenvalues 1 and 2, we just need to replace these by 1n=1 and 2n:

Mn=
1
10

�
1+9 � 2n 3¡ 3 � 2n
3¡ 3 � 2n 9+2n

�

(b) We can simply set n=1 in our formula for Mn, to get M =
1

10

�
19 ¡3
¡3 11

�
.

(c) The eigenvalues are 1 and 2 (because eMx contains the exponentials ex and e2x).

Looking at the coefficients of ex in the first column of eMx, we see that
�
1
3

�
is a 1-eigenvector.

[We can also look the second column of eMx, to obtain
�
3
9

�
which is a multiple and thus equivalent.]

Likewise, by looking at the coefficients of e2x, we see that
�

9
¡3

�
or, equivalently,

�
¡3
1

�
is a 2-eigenvector.

Comment. To see where this is coming from, keep in mind that, associated to a �-eigenvector v, we
have the corresponding solution y(x) = ve�x of the DE y0=My. On the other hand, the columns of
eMx are solutions to that DE and, therefore, must be linear combinations of these ve�x.

(d) From the eigenvalues and eigenvectors, we know that
�
1
3

�
ex and

�
¡3
1

�
e2x are solutions (and that the

general solutions consists of the linear combinations of these two).

Selecting these as the columns, we obtain the fundamental matrix solution �(x)=
"
ex ¡3e2x
3ex e2x

#
.

Comment. The fundamental refers to the fact that the columns combine to the general solution.
The matrix solution means that �(x) itself satisfies the DE: namely, we have �0=M�. That this is the
case is a consequence of matrix multiplication (namely, say, the second column of M� is defined to be
M times the second column of �; but that column is a vector solution and therefore solves the DE).

(e) We can compute eMx as eMx=�(x)�(0)¡1.

If �(x)=
"
ex ¡3e2x
3ex e2x

#
, then �(0)=

�
1 ¡3
3 1

�
and, hence, �(0)¡1= 1

10

�
1 3
¡3 1

�
. It follows that

eMx=�(x)�(0)¡1=

"
ex ¡3e2x
3ex e2x

#
1
10

�
1 3
¡3 1

�
=

1
10

"
ex+9e2x 3ex¡ 3e2x
3ex¡ 3e2x 9ex+ e2x

#
:

(f) We can check that eMx equals the identity matrix if we set x=0:

1
10

"
ex+9e2x 3ex¡ 3e2x
3ex¡ 3e2x 9ex+ e2x

#
 x=0 1

10

�
1+9 3¡ 3
3¡ 3 9+1

�
=

�
1 0
0 1

�
This check does not require much effort and can even be done in our head while writing down eMx. There
is really no excuse for not doing it!
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Another perspective on the matrix exponential

Review. We achieved the milestone to introduce a matrix exponential in such a way that we
can treat a system of DEs, say y 0=My with y(0) = c, just as if the matrix M was a number:
namely, the unique solution is simply y= eMxc.
The price to pay is that the matrix eMx requires some work to actually compute (and proceeds by first determining
a different matrix solution �(x) using eigenvectors and eigenvalues). We offer below another way to think about
eMx (using Taylor series).

(exponential function) ex is the unique solution to y 0= y, y(0)= 1.

From here, it follows that ex=1+x+ x2

2!
+ x3

3!
+ :::.

The latter is the Taylor series for ex at x=0 that we have seen in Calculus II.
Important note. We can actually construct this infinite sum directly from y0= y and y(0)=1.

Indeed, observe how each term, when differentiated, produces the term before it. For instance, d

dx

x3

3!
=
x2

2!
.

Review. We defined the matrix exponential eMx as the unique matrix solution to the IVP

y 0=My ; y(0)= I:

We next observe that we can also make sense of the matrix exponential eMx as a power series.

Theorem 72. Let M be n�n. Then the matrix exponential satisfies

eM = I +M + 1
2!
M2+ 1

3!
M3+ :::

Proof. Define �(x)= I +Mx+
1

2!
M2x2+

1

3!
M3x3+ :::

�0(x) =
d
dx

�
I +Mx+

1
2!
M2x2+

1
3!
M3x3+ :::

�
= 0+M +M2x+

1
2!
M3x2+ :::=M�(x):

Clearly, �(0)= I. Therefore, �(x) is the fundamental matrix solution to y0=My, y(0)= I.

But that's precisely how we defined eMx earlier. It follows that �(x)= eMx. Now set x=1. �

Example 73. If A=
�
2 0
0 5

�
, then A100=

"
2100 0

0 5100

#
.

Example 74. If A=
�
2 0
0 5

�
, then eA=

�
1 0
0 1

�
+
�
2 0
0 5

�
+ 1

2!

"
22 0

0 52

#
+ ���=

"
e2 0

0 e5

#
.

Clearly, this works to obtain eD for every diagonal matrix D.

In particular, for Ax=
�
2x 0
0 5x

�
, eAx=

�
1 0
0 1

�
+
�
2x 0
0 5x

�
+ 1

2!

"
(2x)2 0

0 (5x)2

#
+ ���=

"
e2x 0

0 e5x

#
.

The following is a preview of how the matrix exponential deals with repeated characteristic roots.

Example 75. Determine eAx for A=
�
0 1
0 0

�
.

Solution. If we compute eigenvalues, we find that we get � = 0; 0 (multiplicity 2) but there is only one 0-
eigenvector (up to multiples). This means we are stuck with this approach�however, see next extra section how
we could still proceed.

The key here is to observe that A2=
�
0 0
0 0

�
. It follows that eAx= I +Ax=

�
1 0
0 1

�
+
�
0 x
0 0

�
=
�
1 x
0 1

�
.
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Extra: The case of repeated eigenvalues with too few eigenvectors

Review. To construct a fundamental matrix solution �(x) to y 0=My, we compute eigenvectors:

Given a �-eigenvector v, we have the corresponding solution y(x)=ve�x.
If there are enough eigenvectors, we can collect these as columns to obtain �(x).
The next example illustrates how to proceed if there are not enough eigenvectors.
In that case, instead of looking only for solutions of the type y(x) = ve�x, we also need to look for solutions
of the type y(x)= (vx+w)e�x. This can only happen if an eigenvalue is a repeated root of the characteristic
polynomial.

Example 76. Let M =
�

8 4
¡1 4

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�
1
0

�
.

Solution.

(a) We determine the eigenvectors of M . The characteristic polynomial is:

det(M ¡�I)=det
��

8¡� 4
¡1 4¡�

��
=(8¡�)(4¡�)+ 4=�2¡ 12�+ 36=(�¡ 6)(�¡ 6)

Hence, the eigenvalues are �=6; 6 (meaning that 6 has multiplicity 2).

� To find eigenvectors v for �=6, we need to solve
�

2 4
¡1 ¡2

�
v=0.

Hence, v=
�
¡2
1

�
is an eigenvector for �=6. There is no independent second eigenvector.

� We therefore search for a solution of the form y(x)= (vx+w)e�x with �=6.

y0(x)= (�vx+�w+v)e�x=
!
My=(Mvx+Mw)e�x

Equating coefficients of x, we need �v=Mv and �w+v=Mw.

Hence, v must be an eigenvector (which we already computed); we choose v=
�
¡2
1

�
.

[Note that any multiple of y(x) will be another solution, so it doesn't matter which multiple of
�
¡2
1

�
we choose.]

�w+v=Mw or (M ¡�)w=v then becomes
�

2 4
¡1 ¡2

�
w=

�
¡2
1

�
.

One solution is w=
�
¡1
0

�
. [We only need one.]

Hence, the general solution is C1
�
¡2
1

�
e6x+C2

��
¡2
1

�
x+

�
¡1
0

��
e6x.

(b) The corresponding fundamental matrix solution is �=
"
¡2e6x ¡(2x+1)e6x

e6x xe6x

#
.

(c) Note that �(0)=
�
¡2 ¡1
1 0

�
, so that �(0)¡1=

�
0 1
¡1 ¡2

�
. It follows that

eMx=�(x)�(0)¡1=

"
¡2e6x ¡(2x+1)e6x

e6x xe6x

#�
0 1
¡1 ¡2

�
=

"
(2x+1)e6x 4xe6x

¡xe6x ¡(2x¡ 1) e6x

#
:

(d) The solution to the IVP is y(x)= eMx
�
1
0

�
=

"
(2x+1)e6x 4xe6x

¡xe6x ¡(2x¡ 1) e6x

#�
1
0

�
=

"
(2x+1)e6x

¡xe6x

#
.
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Notes for Lecture 12 Fri, 2/14/2025

Phase portraits and phase plane analysis

Our goal is to visualize the solutions to systems of equations. This works particularly well in the
case of systems of two differential equations. A system that can be written as

dx
dt

= f(x; y)

dy
dt

= g(x; y)

is called autonomous because it doesn't depend on the independent variable t.
Comment. Can you show that if x(t) and y(t) are a pair of solutions, then so is the pair x(t+ t0) and y(t+ t0)?

We can visualize solutions to such a system by plotting the points (x(t); y(t)) for increasing values
of t so that we get a curve (and we can attach an arrow to indicate the direction we're flowing
along that curve). Each such curve is called the trajectory of a solution.

Even better, we can do such a phase portrait without solving to get a formula for (x(t); y(t))!
That's because we can combine the two equations to get dy

dx
= g(x; y)

f(x; y)
, which allows us to make

a slope field! If a trajectory passes through a point (x; y), then we know that the slope at that

point must be dy

dx
= g(x; y)

f(x; y)
.

This allows us to sketch trajectories. However, it does not tell us everything about the corresponding solution
(x(t); y(t)) because we don't know at which times t the solution passes through the points on the curve.
However, we can visualize the speed with which a solution passes through the trajectory by attaching to a point
(x; y) not only the slope g(x; y)

f(x; y)
but the vector

�
f(x; y)
g(x; y)

�
. That vector has the same direction as the slope but

it also tells us in which direction we are moving and how fast (by its magnitude).

Example 77. Sketch some trajectories for the system dx

dt
=x � (y¡ 1), dy

dt
= y � (x¡ 1).

Solution. Let's look at the point (x; y)= (2;¡1), for instance. Then the DEs tell us that dx
dt
=x � (y¡1)=¡4

and dy

dt
= y � (x¡ 1)=¡1. We therefore attach the vector

�
dx

dt
;
dy

dt

�
=(¡4;¡1) to (x; y)= (2;¡1).

Note that if we use dy

dx
=

y � (x¡ 1)
x � (y¡ 1) directly, we find the slope dy

dx
=
¡1
¡4 =

1

4
. This is slightly less information

because it doesn't tell us that we are moving �left and down� as the arrows in the following plot indicate:

2 1 0 1 2

2

1

0

1

2
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Comment. In this example, we can solve the slope-field equation dy

dx
=

y(x¡ 1)
x(y¡ 1) using separation of variables.

Do it! We end up with the implicit solutions y¡ lnjy j=x¡ lnjxj+C.
If we plot these curves for various values of C, we get trajectories in the plot above. However, note that none
of this solving is needed for plotting by itself.
Sage. We can make Sage create such phase portraits for us!

>>> x,y = var('x y')

>>> streamline_plot((x*(y-1),y*(x-1)), (x,-3,3), (y,-3,3))

Equilibrium solutions

(x0; y0) is an equilibrium point of the system dx

dt
= f(x; y), dy

dt
= g(x; y) if

f(x0; y0)= 0 and g(x0; y0)= 0:

In that case, we have the constant (equilibrium) solution x(t)=x0, y(t)= y0.

Comment. Equilibrium points are also called critical points (or stationary points or rest points).

In a phase portrait, the equilibrium solutions are just a single point.
Recall that every other solution (x(t); y(t)) corresponds to a curve (parametrized by t), called the trajectory of
the solution (and we can adorn it with an arrow that indicates the direction of the �flow� of the solution).

We can learn a lot from how solutions behave near equilibrium points.

An equilibrium point is called:

� stable if all nearby solutions remain close to the equilibrium point;

� asymptotically stable if all nearby solutions remain close and �flow into� the equilibrium;

� unstable if it is not stable (some nearby solutions �flow away� from the equilibrium).

Comment. Note that asymptotically stable is a stronger condition than stable. A typical example of a stable,
but not asymptotically stable, equilibrium point is one where nearby solutions loop around the equilibrium point
without coming closer to it.
Advanced comment. For asymptotically stable, we kept the condition that nearby solutions remain close because
there are �weird� instances where trajectories come arbitrarily close to the equilibrium, then �flow away� but
eventually �flow into� (this would constitute an unstable equilibrium point).

Example 78. (cont'd) Consider again the system dx

dt
=x � (y¡ 1), dy

dt
= y � (x¡ 1).

(a) Determine the equilibrium points.

(b) Using the phase portrait from Example 77, classify the stability of each equilibrium point.

Solution.

(a) We solve x(y¡ 1)=0 (that is, x=0 or y=1) and y(x¡ 1)= 0 (that is, x=1 or y=0).
We conclude that the equilibrium points are (0; 0) and (1; 1).

(b) (0; 0) is asymptotically stable (because all nearby solutions �flow into� (0; 0)).
(1; 1) is unstable (because some nearby solutions �flow away� from (1; 1)).
Comment. We will soon learn how to determine stability without the need for a plot.
Comment. If you look carefully at the phase portrait near (1; 1), you can see that certain solutions get
attracted at first to (1; 1) and then �flow away� at the last moment. This suggests that there is a single
trajectory which actually �flows into� (1; 1). This constellation is typical and is called a saddle point.
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Notes for Lecture 13 Mon, 2/17/2025

Phase portraits of autonomous linear differential equations

Example 79. Consider the system dx

dt
= y¡ 5x, dy

dt
=4x¡ 2y.

(a) Determine the general solution.

(b) Make a phase portrait. Can you connect it with the general solution?

(c) Determine all equilibrium points and their stability.

Solution.

(a) Note that we can write this is in matrix form as
�
x
y

�0
=M

�
x
y

�
with M =

�
¡5 1
4 ¡2

�
.

M has ¡1-eigenvector
�
1
4

�
as well as ¡6-eigenvector

�
¡1
1

�
.

Hence, the general solution is
�
x(t)
y(t)

�
=C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t.

(b) We can have Sage make such a plot for us:

>>> x,y = var('x y')
streamline_plot((-5*x+y,4*x-2*y), (x,-4,4), (y,-4,4))

Question. In our plot, we also highlighted two lines
through the origin. Can you explain their signifi-
cance?
Explanation. The lines correspond to the spe-
cial solutionsC1

�
1
4

�
e¡t (green) and C2

�
¡1
1

�
e¡6t

(orange). For each, the trajectories consist of points
that are multiples of the vectors

�
1
4

�
and

�
¡1
1

�
,

respectively.
Note that each such solution starts at a point on
one of the lines and then �flows� into the origin.
(Because e¡t and e¡6t approach zero for large t.)

4 2 0 2 4

4

2

0

2

4

Question. Consider a point like (4; 4). Can you explain why the trajectory through that point doesn't go
somewhat straight to (0; 0) but rather flows nearly parallel the orange line towards the green line?

Explanation. A solution through (4;4) is of the form
�
x(t)
y(t)

�
=C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t (like any other

solution). Note that, if we increase t, then e¡6t becomes small much faster than e¡t.

As a consequence, we quickly get
�
x(t)
y(t)

�
�C1

�
1
4

�
e¡t, where the right-hand side is on the green line.

(c) The only equilibrium point is (0; 0) and it is asymptotically stable.
We can see this from the phase portrait but we can also determine it from the DE and our solution: first,
solving y¡ 5x=0 and 4x¡ 2y=0 we only get the unique solution x=0; y=0, which means that only
(0;0) is an equilibrium point. On the other hand, the general solution shows that every solution approaches
(0; 0) as t!1 because both e¡t and e¡6t approach 0.
In general. This is typical: if both eigenvalues are negative, then the equilibrium is asymptotically stable.
If at least one eigenvalue is positive, then the equilibrium is unstable.
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Example 80. Consider the system dx

dt
=5x¡ y, dy

dt
=2y¡ 4x.

(a) Determine the general solution.

(b) Make a phase portrait.

(c) Determine all equilibrium points and their stability.

Solution.

(a) Note that we can write this is in matrix form as
�
x
y

�0
=M

�
x
y

�
withM =¡

�
¡5 1
4 ¡2

�
, where the matrix

is exactly ¡1 times what it was in Example 79.

Consequently, M has 1-eigenvector
�
1
4

�
as well as 6-eigenvector

�
¡1
1

�
. (Can you explain why the

eigenvectors are the same and the eigenvalues changed sign?)

Thus, the general solution is
�
x(t)
y(t)

�
=C1

�
1
4

�
et+C2

�
¡1
1

�
e6t.

(b) We again have Sage make the plot for us:

>>> x,y = var('x y')
streamline_plot((5*x-y,-4*x+2*y), (x,-4,4), (y,-4,4))
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Note that the phase portrait is identical to the one in Example 79, except that the arrows are reversed.

(c) The only equilibrium point is (0; 0) and it is unstable.

We can see this from the phase portrait but we can also see it readily from our general solution
�
x(t)
y(t)

�
=

C1
�
1
4

�
et+C2

�
¡1
1

�
e6t because et and e6t go to 1 as t!1.

In general. If at least one eigenvalue is positive, then the equilibrium is unstable.

Example 81. Suppose the system dx

dt
= f(x; y), dy

dt
= g(x; y) has general solution

�
x(t)
y(t)

�
=

C1
�
1
4

�
e¡t+C2

�
¡1
1

�
e6t. Determine all equilibrium points and their stability.

Solution. Recall that equilibrium points correspond to constant solutions. Clearly, the only constant solution is
the zero solution

�
x(t)
y(t)

�
=
�
0
0

�
. Equivalently, the only equilibrium point is (0; 0).

Since e6t!1 as t!1, we conclude that the equilibrium is unstable. (Note that the solution C2
�
¡1
1

�
e6t

starts arbitrarily near to (0; 0) but always �flows away�).
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Notes for Lecture 14 Mon, 2/24/2025

Stability of autonomous linear differential equations

Example 82. (spiral source, spiral sink, center point)

(a) Analyze the system d

dt

�
x
y

�
=
�

1 1
¡4 1

��
x
y

�
.

(b) Analyze the system d

dt

�
x
y

�
=¡

�
1 1
¡4 1

��
x
y

�
.

(c) Analyze the system d

dt

�
x
y

�
=
�

0 1
¡4 0

��
x
y

�
.

Solution.

(a)
The eigenvalues are �= 1� 2i and the general solution, in real
form, is:�

x(t)
y(t)

�
=C1

�
cos(2t)
¡2sin(2t)

�
et+C2

�
sin(2t)
2cos(2t)

�
et

In this case, the origin is a spiral source which is an unstable
equilibrium (note that it follows from et!1 as t!1 that all
solutions �flow away� from the origin because they have increasing
amplitude).

Review.
�
cos(t)
sin(t)

�
parametrizes the unit circle.

Similarly,
�

cos(t)
2sin(t)

�
parametrizes an ellipse.
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(b)
The eigenvalues are �=¡1� 2i and the general solution, in real
form, is:�

x(t)
y(t)

�
=C1

�
cos(2t)
¡2sin(2t)

�
e¡t+C2

�
sin(2t)
2cos(2t)

�
e¡t

In this case, the origin is a spiral sink which is an asymptotically
stable equilibrium (note that it follows from e¡t! 0 as t!1
that all solutions �flow into� the origin because their amplitude
goes to zero).

Comment. Note that
�
x(t)
y(t)

�
solves the first system if and only

if
�
x(¡t)
y(¡t)

�
is a solution to the second. Consequently, the phase

portraits look alike but all arrows are reversed.
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(c)
The eigenvalues are �=�2i and the general solution, in real form,
is:�

x(t)
y(t)

�
=C1

�
cos(2t)
¡2sin(2t)

�
+C2

�
sin(2t)
2cos(2t)

�

In this case, the origin is a center point which is a stable equi-
librium (note that the solutions are periodic with period � and
therefore loop around the origin; with each trajectory a perfect
ellipse).
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Review. In Example 79, we considered the system dx

dt
= y¡ 5x, dy

dt
=4x¡ 2y.

We found that it has general solution
�
x(t)
y(t)

�
=C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t.

In particular, the only equilibrium point is (0; 0) and it is asymptotically stable.

The following example is an inhomogeneous version of Example 79:

Example 83. Analyze the system dx

dt
= y¡ 5x+3, dy

dt
=4x¡ 2y.

In particular, determine the general solution as well as all equilibrium points and their stability.

Solution. As reviewed above, we looked at the corresponding homogeneous system in Example 79 and found
that its general solution is

�
x(t)
y(t)

�
=C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t.

Note that we can write the present system in matrix form as
�
x
y

�0
=M

�
x
y

�
+
�
3
0

�
with M =

�
¡5 1
4 ¡2

�
.

To find the equilibrium point, we solveM
�
x
y

�
+
�
3
0

�
=0 to find

�
x
y

�
=¡M¡1

�
3
0

�
=¡1

6

�
¡2 ¡1
¡4 ¡5

��
3
0

�
=
�
1
2

�
.

The fact that
�
1
2

�
is an equilibrium point means that

�
x
y

�
=
�
1
2

�
is a particular solution!

(Make sure that you see that it has exactly the form we expect from the method of undetermined coefficients!)

Thus, the general solution must be
�
x(t)
y(t)

�
=
�
1
2

�
+C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t (that is, the particular solution

plus the general solution of the homogeneous system that we solved in Example 79).

As a result, the phase portrait is going to look just as in Example 79 but shifted by
�
1
2

�
:
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Because both eigenvalues (¡1 and ¡6) are negative,
�
1
2

�
is an asymptotically stable equilibrium point. More

precisely, it is what is called a nodal source.
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As we have started to observe, the eigenvalues determine the stability of the equilibrium point in
the case of an autonomous linear 2-dimensional systems. The following table gives an overview.

Important. Note that such a system must be of the form d

dt

�
x
y

�
=M

�
x
y

�
+ c, where c=

�
c1
c2

�
is a constant

vector. Because the system is autonomous, the matrix M and the inhomogeneous part c cannot depend on t.

(stability of autonomous linear 2-dimensional systems)

eigenvalues behaviour stability solutions have terms like
real and both positive nodal source unstable e3t, e7t

real and both negative nodal sink asymptotically stable e¡3t, e¡7t

real and opposite signs saddle unstable e¡3t, e7t

complex with positive real part spiral source unstable e3tcos(7t), e3tsin(7t)
complex with negative real part spiral sink asymptotically stable e¡3tcos(7t), e¡3tsin(7t)
purely imaginary center point stable

(not asymptotically stable)

cos(7t), sin(7t)

Review: Linearizations of nonlinear functions

Recall from Calculus I that a function f(x) around a point x0 has the linearization

f(x)� f(x0)+ f 0(x0)(x¡x0):

Here, the right-hand side is the linearization and we also know it as the tangent line to f(x) at x0.

Recall from Calculus III that a function f(x; y) around a point (x0; y0) has the linearization

f(x; y)� f(x0; y0)+ fx(x0; y0)(x¡x0)+ fy(x0; y0)(y¡ y0):

Again, the right-hand side is the linearization. This time, it describes the tangent plane to f(x; y) at (x0; y0).

Recall that fx=
@

@x
f(x; y) and fy=

@

@y
f(x; y) are the partial derivatives of f .

Example 84. Determine the linearization of the function 3+2xy2 at (2; 1).
Solution. If f(x; y)= 3+2xy2, then fx=2y2 and fy=4xy. In particular, fx(2; 1)=2 and fy(2; 1)= 8.

Accordingly, the linearization is f(2; 1)+ fx(2; 1)(x¡ 2)+ fy(2; 1)(y¡ 1)=7+2(x¡ 2)+ 8(y¡ 1).
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Notes for Lecture 15 Wed, 2/26/2025

Review: Linearizations of nonlinear functions (cont'd)

Review.
Recall from Calculus I that a function f(x) around a point x0 has the linearization

f(x)� f(x0)+ f 0(x0)(x¡x0):

Recall from Calculus III that a function f(x; y) around a point (x0; y0) has the linearization

f(x; y)� f(x0; y0)+ fx(x0; y0)(x¡x0)+ fy(x0; y0)(y¡ y0):

It follows that a vector function f(x; y)=
�
f(x; y)
g(x; y)

�
around a point (x0; y0) has the linearization

�
f(x; y)
g(x; y)

�
�
�
f(x0; y0)
g(x0; y0)

�
+
�
fx(x0; y0)
gx(x0; y0)

�
(x¡x0)+

"
fy(x0; y0)
gy(x0; y0)

#
(y¡ y0)

=
�
f(x0; y0)
g(x0; y0)

�
+

"
fx(x0; y0) fy(x0; y0)
gx(x0; y0) gy(x0; y0)

#
=J(x0;y0)

�
x¡x0
y¡ y0

�
:

The matrix J(x; y)=
"
fx fy
gx gy

#
is called the Jacobian matrix of f(x; y).

Example 85. Determine the linearization of the vector function
"

3+ 2xy2

x(y3¡ 2x)

#
at (2; 1).

Solution. If
�
f(x; y)
g(x; y)

�
=

"
3+2xy2

x(y3¡ 2x)

#
, then the Jacobian matrix is

J(x; y)=

"
fx fy
gx gy

#
=

"
2y2 4xy

y3¡ 4x 3xy2

#
:

In particular, J(2; 1)=
�

2 8
¡7 6

�
. The linearization is

�
f(2; 1)
g(2; 1)

�
+ J(2; 1)

�
x¡ 2
y¡ 1

�
=
�

7
¡6

�
+
�

2 8
¡7 6

��
x¡ 2
y¡ 1

�
.

Important comment. If we multiply out the matrix-vector product, then we get
�

7+2(x¡ 2)+ 8(y¡ 1)
¡6¡ 7(x¡ 2)+ 6(y¡ 1)

�
.

In the first component we get exactly what we got for the linearization of f(x; y) in the previous example.
Likewise, the second component is the linearization of g(x; y) by itself.
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Stability of nonlinear autonomous systems

We now observe that we can (typically) determine the stability of an equilibrium point of a
nonlinear system by simply linearizing at that point.

(stability of autonomous nonlinear 2-dimensional systems)

Suppose that (x0; y0) is an equilibrium point of the system d

dt

�
x
y

�
=
�
f(x; y)
g(x; y)

�
.

If the Jacobian matrix J(x0; y0) is invertible, then its eigenvalues determine the stability and
behaviour of the equlibrium point as for a linear system except in the following cases:

� If the eigenvalues are pure imaginary, we cannot predict stability (the equilibrium point could be either
a center or a spiral source/sink; whereas the equilibrium point of the linearization is a center).

� If the eigenvalues are real and equal, then the equilibrium point could be either nodal or spiral (whereas
the linearization has a nodal equilibrium point). The stability, however, is the same.

Comment. We need the Jacobian matrix J(x0; y0) to be invertible, so that the linearized system has a unique
equilibrium point.

Plot, for instance, the phase portrait of d

dt

�
x
y

�
=
�
(x¡ 2y)x
(x¡ 2)y

�
.

Purely imaginary eigenvalues? The issue with pure imaginary eigenvalues here comes from the fact that the
linearization is only an approximation, with the true (nonlinear) behaviour slightly deviating. Slightly perturbing
purely imaginary roots can also lead to (small but) positive real part (unstable; spiral source) or negative real
part (asymptotically stable; spiral sink).
Real repeated eigenvalue? The issue with a real repeated eigenvalue is similar. Slightly perturbing such a root
can lead to real eigenvalues (nodal) or a pair of complex conjugate eigenvalues (spiral). However, the real part
of these perturbations still has the same sign so that we can still predict the stability itself.

The following is a continuation of Example 77:

Example 86. (cont'd) Consider again the system dx

dt
= x � (y ¡ 1), dy

dt
= y � (x ¡ 1). Without

consulting a plot, determine the equilibrium points and classify their stability.
Solution. See Example 77 for the phase portrait. However, we will not use it in the following.
To find the equilibrium points, we solve x(y¡ 1)= 0 (that is, x=0 or y=1) and y(x¡ 1)= 0 (that is, x=1
or y=0). We conclude that the equilibrium points are (0; 0) and (1; 1).

Our system is d

dt

�
x
y

�
=
�
f(x; y)
g(x; y)

�
with

�
f(x; y)
g(x; y)

�
=
�
x � (y¡ 1)
y � (x¡ 1)

�
.

The Jacobian matrix is J(x; y)=
"
fx fy
gx gy

#
=
�
y¡ 1 x
y x¡ 1

�
.

� At (0; 0), the Jacobian matrix is J(0; 0)=
�
¡1 0
0 ¡1

�
. We can read off that the eigenvalues are ¡1;¡1.

Since they are both negative, (0; 0) is asymptotically stable.
Since this is a real repeated eigenvalue, we cannot immediately tell whether (0; 0) is a nodal sink (it is a
nodal sink for the linearization!) or a nodal spiral. (Since our system is nonlinear, the linearization is just
an approximation. Similarly, you can think of the eigenvalues ¡1;¡1 as being somewhat approximate.
Slight jiggling could change them to something like¡1�0.001i which would correspond to a nodal spiral.)

� At (1; 1), the Jacobian matrix is J(1; 1)=
�
0 1
1 0

�
.

The characteristic polynomial is det
��
¡� 1
1 ¡�

��
=�2¡1, which has roots�1. These are the eigenvalues.

Since one is positive and the other is negative, (1; 1) is a saddle. In particular, (1; 1) is unstable.
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Example 87. Consider again the system d

dt

�
x
y

�
=
"

2y¡x2
(x¡ 3)(x¡ y)

#
. Without consulting a plot,

determine the equilibrium points and classify their stability.
Solution. To find the equilibrium points, we solve 2y¡x2=0 and (x¡ 3)(x¡ y).
It follows from the second equation that x=3 or x= y:

� If x=3, then the first equation implies y= 9

2
.

� If x= y, then the first equation becomes 2y¡ y2=0, which has solutions y=0 and y=2.

Hence, the equilibrium points are (0; 0), (2; 2) and
�
3;
9

2

�
.

The Jacobian matrix of
�
f
g

�
=
�

2y¡ x2

(x¡ 3)(x¡ y)

�
is J =

"
fx fy
gx gy

#
=
�

¡2x 2
2x¡ y¡ 3 ¡x+3

�
.

� At (0; 0), the Jacobian matrix is J =
�

0 2
¡3 3

�
. The eigenvalues are 1

2
(3� i 15

p
).

Since these are complex with positive real part, (0; 0) is a spiral source and, in particular, unstable.

� At (2; 2), the Jacobian matrix is J =
�
¡4 2
¡1 1

�
. The eigenvalues are 1

2
(¡3� 17

p
)�¡3.562; 0.562.

Since these are real with opposite signs, (2; 2) is a saddle and, in particular, unstable.

� At
�
3;
9

2

�
, the Jacobian matrix is J =

"
¡6 2

¡3
2
0

#
. The eigenvalues are ¡3� 6

p
�¡5.449;¡0.551.

Since these are real and both negative,
�
3;
9

2

�
is a nodal sink and, in particular, asymptotically stable.
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Comment. Can you confirm our analysis in the above plot? Note that it is becoming hard to see the details.
One solution would be to make separate phase portraits focusing on the vicinity of each equilibrium plot. Do it!
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Notes for Lecture 16 Fri, 2/28/2025

Modeling & Applications

Application: Lotka�Volterra predator�prey model

Review. Exponential model, logistic model, . . .

The Lotka�Volterra equations

dx
dt

=�x¡ �xy;
dy
dt

= �xy¡ y;

are used, for instance, in biology to describe the dynamics of two species that interact, one as a
predator and the other as prey. (Here, �; �; ; � are positive real constants.)

Can you put into words how these equations might indeed describe the interactions between predator and prey?
To begin with, which of x and y is the predator and which is the prey? What are the equations saying about a
population of only predator or only prey?
For more information: https://en.wikipedia.org/wiki/Lotka-Volterra_equations

Example 88. Determine the equilibrium points of the Lotka�Volterra equations and classify their
stability. What does this mean for this problem?
Solution. Solving �x ¡ �xy = x(� ¡ �y) = 0 and �xy ¡ y = (�x ¡ )y = 0, we find that there are two

equilibrium points: (0; 0) and
�


�
;
�

�

�
.

The Jacobian matrix of
�
f
g

�
=
�
�x¡ �xy
�xy¡ y

�
is J =

"
fx fy
gx gy

#
=
�
�¡ �y ¡�x
�y �x¡ 

�
.

� At (0; 0), the Jacobian matrix is J =
�
� 0
0 ¡

�
. The eigenvalues are � and ¡.

Since these are real with opposite signs, (0; 0) (�extinction�) is a saddle and, in particular, unstable.

� At
�


�
;
�

�

�
, the Jacobian matrix is J=

�
0 ¡�/�

��/� 0

�
. The characteristic polynomial is �2+� so that

the eigenvalues are �i �
p

.
Since the eigenvalues are pure imaginary, we cannot immediately predict stability (the equilibrium point
of the linearization is a center but our equilibrium point could be either a center or a spiral source/sink).
A closer inspection shows that the equilibrium point here is a center (see the comment below). This is
confirmed by the following phase portrait for �= 2

3
, �= 4

3
, = �=1.
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0.0

0.5
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Comment. The equilibrium point
�


�
;
�

�

�
has the interesting feature that the stable population for y (the

predator) depends on the growth parameters for x (the prey). This is somewhat paradoxical: for instance, if
we increase the birth rate � of the prey (for instance, by improving the environment for the prey), we would
expect the long-term population levels of the prey to increase. But our calculations say that this is not the case:
instead only the long-term levels of the predator increase. (See the wikipedia article for links with the �paradox
of enrichment� and how such effects can indeed be observed in actual populations.)

Comment. Here is one way to conclude that
�


�
;
�

�

�
is a center and, therefore, stable.

We can eliminate t from the DEs to arrive at dy
dx
=

(�x¡ )y

x(�¡ �y)
.

In general, solutions to this DE describe the trajectories in our phase plots.

Here, the DE for dy
dx

is separable: �¡ �y

y
dy=

�x¡ 

x
dx. Integrating (and using that x; y > 0), we find that

�ln(y)¡ �y= �ln(x)¡ x+C:

This means that the trajectories in our phase portrait are level curves of the function �ln(y)¡ �y¡ �ln(x)+ x.
Since there are no anomalies for x; y>0, these level curves cannot be spiralling towards the equilibrium point (for
instance, we can fix values for x> 0 and C, and then observe that �ln(y)¡ �y=D with D= �ln(x)¡ x+C
has at most two solutions for y and certainly not infinitely many). Thus, the equilibrium point is a center.

Bonus: Two more applications of systems of DEs

Example 89. (epidemiology) Let us indicate the popular SIR model for short outbreaks of
diseases among a population of constant size N .
In a SIR model, the population is compartmentalized into S(t) susceptible, I(t) infected and R(t) recovered (or
resistant) individuals (N = S(t) + I(t) +R(t)). In the Kermack-McKendrick model, the outbreak of a disease
is modeled by

dR
dt

= I ;
dS
dt

=¡�SI ; dI
dt
= �SI ¡ I ;

with  modeling the recovery rate and � the infection rate. Note that this is a nonlinear system of differential
equations. For more details and many variations used in epidemiology, see:
https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

Comment. The following variation

dR
dt

= IR;
dS
dt

=¡�SI ; dI
dt
= �SI ¡ IR;

which assumes �infectious recovery�, was used in 2014 to predict that facebook might lose 80% of its users by
2017. It's that claim, not mathematics (or even the modeling), which attracted a lot of media attention.
http://blogs.wsj.com/digits/2014/01/22/controversial-paper-predicts-facebook-decline/

Example 90. (military strategy) Lanchester's equations model two opposing forces during
�aimed fire� battle.
Let x(t) and y(t) describe the number of troops on each side. Then Lanchester (during World War I) assumed
that the rates ¡x0(t) and ¡y 0(t), at which soldiers are put out of action, are proportional to the number of
opposing forces. That is:"

x0(t)
y 0(t)

#
=

�
¡�y(t)
¡�x(t)

�
; or, in matrix form:

"
x0

y 0

#
=

�
0 ¡�
¡� 0

��
x
y

�
:

The proportionality constants �; � > 0 indicate the strength of the forces (�fighting effectiveness coefficients�).
These are simple linear DEs with constant coefficients, which we have learned how to solve.
For more details, see: https://en.wikipedia.org/wiki/Lanchester%27s_laws
Comment. The �aimed fire� means that all combatants are engaged, as is common in modern combat with long-
range weapons. This is rather different than ancient combat where soldiers were engaging one opponent at a time.
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Notes for Lecture 17 Mon, 3/10/2025

Application: Mixing problems

Example 91. Consider two brine tanks. Tank T1 contains 24gal water containing 3lb salt, and
tank T2 contains 9gal pure water.

� T1 is being filled with 54gal/min water containing 0.5lb/gal salt.

� 72gal/min well-mixed solution flows out of T1 into T2.

� 18gal/min well-mixed solution flows out of T2 into T1.

� Finally, 54gal/min well-mixed solution is leaving T2.

We wish to understand how much salt is in the tanks after t minutes.

(a) Derive a system of differential equations.

(b) Determine the equilibrium points and classify their stability. What does this mean here?

(c) Solve the system to find explicit formulas for how much salt is in the tanks after t minutes.

Solution.

(a) Note that the amount of water in each tank is constant because the flows balance each other.
Let yi(t) denote the amount of salt (in lb) in tank Ti after time t (in min). In time interval [t; t+�t]:

�y1� 54 � 1
2
��t¡ 72 � y1

24
��t+ 18 � y2

9
��t, so y10 = 27¡ 3y1+2y2. Also, y1(0)= 3.

�y2� 72 � y1
24
��t¡ 72 � y2

9
��t, so y20 =3y1¡ 8y2. Also, y2(0)=0.

Using matrix notation and writing y=
�
y1
y2

�
, this is d

dt
y=

�
¡3 2
3 ¡8

�
y+

�
27
0

�
, y(0)=

�
3
0

�
.

(b) Note that this system is autonomous! Otherwise, we could not pursue our stability analysis.

To find the equilibrium point (since the system is linear, there should be just one), we set d

dt
y=

�
0
0

�
and

solve
�
¡3 2
3 ¡8

�
y+

�
27
0

�
=
�
0
0

�
. We find y=

�
¡3 2
3 ¡8

�¡1� ¡27
0

�
=
�

12
4.5

�
.

The characteristic polynomial of
�
¡3 2
3 ¡8

�
is (¡3¡�)(¡8¡�)¡ 6=�2+ 11�+ 18=(�+9)(�+2).

Hence, the eigenvalues are ¡9; ¡2. Since they are both negative, the equilibrium point is a nodal sink
and, in particular, asymptotically stable.
Having an equilibrium point at (12;4.5), means that, if the salt amounts are y1=12, y2=4.5, then they
won't change over time (but will remain unchanged at these levels). The fact that it is asymptotically
stable means that salt amounts close to these balanced levels will, over time, approach the equilibrium
levels. (Because the system is linear, this is also true for levels that are not �close�.)
We could have �seen� the equilibrium point!
Indeed, noticing that, for a constant (equilibrium) particular solution y, each tank has to have a constant
concentration of 0.5lb/gal of salt, we find directly y= 0.5

�
24
9

�
=
�

12
4.5

�
.

(c) We sketch the computation. From the previous part, we know that a particular solution is yp=
�

12
4.5

�
.

A fundamental matrix of the homogeneous system is �(t)=
"

e¡9t 2e¡2t

¡3e¡9t e¡2t

#
(compute eigenvectors!).

Hence, the general solution to the inhomogeneous system is y(t)=
�

12
4.5

�
+C1

�
1
¡3

�
e¡9t+C2

�
2
1

�
e¡2t.

Using the initial condition y(0)=
�
3
0

�
, we get the equation

�
12
4.5

�
+C1

�
1
¡3

�
+C2

�
2
1

�
=
�
3
0

�
.

Solving this, we find C1=0 and C2=¡4.5.

In conclusion, the unique solution to the IVP is y(t)=
"

12¡ 9e¡2t
4.5¡ 4.5e¡2t

#
.

Comment. We will soon discuss inhomogeneous linear systems in general.
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Example 92. Consider two brine tanks. Initially, tank T1 is filled with 10gal water containing 2lb
salt, and tank T2 with 5gal pure water.

� T1 is being filled with 4gal/min water containing 0.5lb/gal salt.

� 5gal/min well-mixed solution flows out of T1 into T2.

� 2gal/min well-mixed solution flows out of T2 into T1.

� Finally, 1gal/min well-mixed solution is leaving T2.

Derive a system of equations for the amount of salt in the tanks after t minutes.
Solution. Let Vi(t) denote the amount of solution (in gal) in tank Ti after time t (in min). Then V1(t) =
10+4t¡ 5t+2t= 10+ t while V2(t)= 5+5t¡ 2t¡ t=5+2t.
Let yi(t) denote the amount of salt (in lb) in tank Ti after time t (in min). In the time interval [t; t+�t]:

�y1� 4 � 12 ��t¡ 5 �
y1
V1
��t+2 � y2

V2
��t, so y10 =2¡ 5y1

V1
+2

y2
V2
. Also, y1(0)= 2.

�y2� 5 � y1V1 ��t¡ (2+ 1) � y2
V2
��t, so y20 =5

y1
V1
¡ 3y2

V2
. Also, y2(0)= 0.

In conclusion, we have obtained the system of equations

y1
0 = ¡ 5

10+ t
y1+

2
5+2t

y2+2; y1(0)= 2;

y2
0 =

5
10+ t

y1¡
3

5+2t
y2; y2(0)= 0:

Note that this is a system of linear DEs. It is inhomogeneous (because of the +2 in the first equation). Its
coefficients are not constant. As a consequence, this system is not autonomous and so we cannot apply our
stability analysis.

In matrix-vector form. If we write y=
�
y1
y2

�
, then the system becomes

y0=

24 ¡ 5

10+ t

2

5+2t
5

10+ t
¡ 3

5+ 2t

35y+� 2
0

�
; y(0)=

�
2
0

�
:
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Notes for Lecture 18 Wed, 3/12/2025

Review: Linear first-order DEs

The most general first-order linear DE is P (t)y 0+Q(t)y+R(t)= 0.
By dividing by P (t) and rearranging, we can always write it in the form y 0= a(t)y+ f(t).
The corresponding homogeneous linear DE is y 0= a(t)y.

Its general solution is y(t)=Ce
R
a(t)dt.

Why? Compute y 0 and verify that the DE is indeed satisfied. Alternatively, we can derive the formula using
separation of variables as illustrated in the next example.

Example 93. (review homework) Solve y 0= t2y.

Solution. This DE is separable as well: 1
y
dy= t2 dt (note that we just lost the solution y=0).

Integrating gives lnjy j = 1

3
t3 + A, so that jy j = e

1
3
t2+A. Since the RHS is never zero, we must have either

y= e
1
3
t2+A or y=¡e

1
3
t2+A.

Hence y=�eAe
1
3
t3
=Ce

1
3
t3 (with C =�eA). Note that C=0 corresponds to the singular solution y=0.

In summary, the general solution is y=Ce
1
3
t3 (with C any real number).

Solving linear first-order DEs using variation of constants

Recall that, to find the general solution of the inhomogeneous DE

y 0= a(t)y+ f(t);

we only need to find a particular solution yp.

Then the general solution is yp+Cyh, where yh is any solution of the homogeneous DE y 0= a(t)y.
Comment. In applications, f(t) often represents an external force. As such, the inhomogeneous DE is sometimes
called �driven� while the homogeneous DE would be called �undriven�.

Theorem 94. (variation of constants) y 0= a(t)y+ f(t) has the particular solution

yp(t)= c(t)yh(t) with c(t)=
Z

f(t)
yh(t)

dt;

where yh(t)= e
R
a(t)dt is a solution to the homogeneous equation y 0= a(t)y.

Proof. Let us plug yp(t)= yh(t)

Z
f(t)
yh(t)

dt into the DE to verify that it is a solution:

yp
0 (t)= yh

0 (t)

Z
f(t)
yh(t)

dt+ yh(t)
d
dt

Z
f(t)
yh(t)

dt

f(t)
yh(t)

= a(t)yh(t)

Z
f(t)
yh(t)

dt+ f(t)= a(t)yp(t)+ f(t) �

Comment. Note that the formula for yp(t) gives the general solution if we let
Z

f(t)
yh(t)

dx be the general

antiderivative. (Think about the effect of the constant of integration!)
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Example 95. Solve x2y 0=1¡xy+2x, y(1)=3.

Solution. To apply Theorem 94, we write as dy

dx
= a(x)y+ f(x) with a(x)=¡1

x
and f(x)= 1

x2
+

2

x
.

yh(x)= e
R
a(x)dx= e¡lnx=

1

x
. (Why can we write lnx instead of lnjxj? See comment below.) Hence:

yp(x)= yh(x)

Z
f(x)
yh(x)

dx=
1
x

Z
(
1
x
+2)dx=

lnx+2x+C
x

Using y(1)= 3, we find C=1. In summary, the solution is y= ln(x)+ 2x+1

x
.

Comment. Note that x=1>0 in the initial condition. Because of that we know that (at least locally) our solution
will have x>0. Accordingly, we can use lnx instead of lnjxj. (If the initial condition had been y(¡1)=3, then
we would have x< 0, in which case we can use ln(¡x) instead of lnjxj.)
Comment. Observe how the general solution (with parameter C) is indeed obtained from any particular solution
(say, ln x+2x

x
) plus the general solution to the homogeneous equation, which is C

x
.

How to find the formula for variation of constants?

� Variation of constants means that we look for a solution of the form yp(t)= c(t)yh(t).
Keep in mind that cyh(t) is the solution to the homogeneous DE. Going from a constant c (for the
homogeneous case) to c(t) (for the inhomogeneous case) is why this is called �variation of constants�
(or, sometimes, variation of parameters).

� To find a c(t) that works, we plug into the DE y 0= ay+ f which results in

c 0yh+ cyh
0 = acyh+ f:

Since yh
0 = ayh, this simplifies to c 0yh= f or, equivalently, c 0= f

yh
.

� We integrate to find c(t)=
R f(t)

yh(t)
dt, which is the formula in Theorem 94.

How does this compare to the integrating factor method? Instead of variation of constants, you may have
solved linear DEs using integrating factors instead. In that case, the DE is first written as y0¡ a(t)y = f(t)
and then both sides are multiplied with the integrating factor

g(t)= exp
�Z

¡a(t)dt
�
:

Because g0(t)=¡a(t)g(t), we then have

g(t)y0¡ a(t)g(t)y
=

d
dt
g(t)y

= f(t)g(t):

Integrating both sides gives

g(t)y=

Z
f(t)g(t)dt:

Since g(t)= 1/yh(t), this then produces the same formula for y that we found using variation of constants.
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Notes for Lecture 19 Fri, 3/14/2025

Systems of linear DEs: the inhomogeneous case

Recall that any linear DE can be transformed into a first-order system. Hence, any linear DE (or
any system of linear DEs) can be written as

y 0=A(t) y+ f(t):

Note. The DE is allowed to have nonconstant coefficients (A depends on t). On the other hand, this is an
autonomous DE (those for which we can analyze phase portraits) only if A(t) and f(t) actually don't depend on t.

The same arguments as for Theorem 94 with the same result apply to systems of linear equations!
Recall that we showed in Theorem 94 that y 0= a(t)y+ f(t) has the particular solution

yp(t)= yh(t)

Z
f(t)
yh(t)

dt;

where yh(t)= e
R
a(t)dt is a solution to the homogeneous equation y 0= a(t)y.

Theorem 96. (variation of constants) y 0=A(t) y+ f(t) has the particular solution

yp(t)=�(t)
Z
�(t)¡1f(t)dt;

where �(t) is a fundamental matrix solution to y 0=A(t) y.

Proof. Since the general solution of the homogeneous equation y0=A(t) y is yh=�(t)c, we are going to vary
the constant c and look for a particular solution of the form yp=�(t)c(t). Plugging into the DE, we get:

yp
0 =�0c+�c0=A�c+�c0 =

!
Ayp+ f =A�c+ f

For the first equality, we used the matrix version of the usual product rule (which holds since differentiation is
defined entry-wise). For the second equality, we used �0=A�.
Hence, yp=�(t)c(t) is a particular solution if and only if �c0= f.
The latter condition means c0=�¡1f so that c=

R
�(t)¡1f(t)dt, which gives the claimed formula for yp. �

Example 97. Find a particular solution to y 0=
�
2 3
2 1

�
y+

"
0

¡2e3t

#
.

Solution. First, we determine (do it!) a fundamental matrix solution for y0=
�
2 3
2 1

�
y: �(x)=

"
e¡t 3e4t

¡e¡t 2e4t

#
Using det(�(t))= 5e3t, we find �(t)¡1= 1

5

"
2et ¡3et
e¡4t e¡4t

#
.

Hence, �(t)¡1f(t)= 2

5

"
3e4t

¡e¡t

#
and

R
�(t)¡1f(t)dx=

2

5

"
3/4e4t

e¡t

#
.

By variation of constants, yp(t)=�(t)
R
�(t)¡1f(t)dt=

"
e¡t 3e4t

¡e¡t 2e4t

#
2

5

"
3/4e4t

e¡t

#
=
�
3/2
1/2

�
e3t.

Comment. Note that the solution is of the form that we anticipate from the method of undetermined coefficients
(which we only discussed in the case of a single DE but which works similarly for systems).
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Sage. Here is a way to have Sage do these computations for us. Keep in mind that we can choose �(t)= eAt.

>>> s, t = var('s, t')

>>> A = matrix([[2,3],[2,1]])

>>> y = exp(A*t)*integrate(exp(-A*t)*vector([0,-2*e^(3*t)]), t)

>>> y.simplify_full()�
3
2
e(3 t);

1
2
e(3 t)

�
In the special case that �(t)= eAt, some things become easier. For instance, �(t)¡1= e¡At. In
that case, we can explicitely write down solutions to IVPs:

� y 0=Ay, y(0)= c has (unique) solution y(t)= eAtc.

� y 0=Ay+ f(t), y(0)= c has (unique) solution y(t)= eAtc+ eAt
R
0

t
e¡Asf(s)ds.

Example 98. Let A=
�

1 2
¡1 4

�
.

(a) Determine eAt.

(b) Solve y 0=Ay, y(0)=
�
1
2

�
.

(c) Solve y 0=Ay+
"

0
2et

#
, y(0)=

�
1
2

�
.

Solution.

(a) By proceeding as in Example 69 (do it!), we find eAt=
"
2e2t¡ e3t ¡2e2t+2e3t

e2t¡ e3t ¡e2t+2e3t

#
.

(b) y(t)= eAt
�
1
2

�
=

"
¡2e2t+3e3t

¡e2t+3e3t

#

(c) y(t)= eAt
�
1
2

�
+ eAt

R
0
t
e¡Asf(s)ds. We compute:R

0
t
e¡Asf(s)ds=

R
0
t
"
2e¡2s¡ e¡3s ¡2e¡2s+2e¡3s

e¡2s¡ e¡3s ¡e¡2s+2e¡3s

#�
0
2es

�
ds=

R
0
t
"
¡4e¡s+4e¡2s

¡2e¡s+4e¡2s

#
ds=

"
4e¡t¡ 2e¡2t¡ 2
2e¡t¡ 2e¡2t

#

Hence, eAt
R
0
t
e¡Asf(s)ds=

"
2e2t¡ e3t ¡2e2t+2e3t

e2t¡ e3t ¡e2t+2e3t

#"
4e¡t¡ 2e¡2t¡ 2
2e¡t¡ 2e¡2t

#
=

"
2et¡ 4e2t+2e3t

¡2e2t+2e3t

#
.

Finally, y(t)=
"
¡2e2t+3e3t

¡e2t+3e3t

#
+

"
2et¡ 4e2t+2e3t

¡2e2t+2e3t

#
=

"
2et¡ 6e2t+5e3t

¡3e2t+5e3t

#
.
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Sage. Here is how we can let Sage do these computations for us:

>>> s, t = var('s, t')

>>> A = matrix([[1,2],[-1,4]])

>>> y = exp(A*t)*vector([1,2]) + exp(A*t)*integrate(exp(-A*s)*vector([0,2*e^s]), s,0,t)

>>> y.simplify_full()

(5 e(3 t)¡ 6 e(2 t)+2 et; 5 e(3 t)¡ 3 e(2 t))

Comment. Can you see that the solution is of the form that we anticipate from the method of undetermined
coefficients?
Indeed, y(t)= yp(t)+ yh(t) where the simplest particular solution is yp(t)=

�
2et

0

�
.

Example 99. In Example 91, we derived the IVP d

dt
y=

�
¡3 2
3 ¡8

�
y+

�
27
0

�
, y(0)=

�
3
0

�
.

Solve it using our new tools.
Solution. This is an IVP that we can solve (with some work). Do it! For instance, we can apply variation of
constants. (Alternatively, leverage our particular solution from the previous part!) Skipping most work, we find:

� If A=
�
¡3 2
3 ¡8

�
, then eAt= 1

7

"
e¡9t+6e¡2t ¡2e¡9t+2e¡2t

¡3e¡9t+3e¡2t 6e¡9t+ e¡2t

#

� y= eAt
�
1
0

�
+ eAt

R
0
t
e¡As

�
27
0

�
ds=

1

7

"
e¡9t+6e¡2t

¡3e¡9t+3e¡2t

#
+

3

14e
At
"

2e9t+ 54e2t¡ 56
¡6e9t+ 27e2t¡ 21

#
=

"
12¡ 9e¡2t

4.5¡ 4.5e¡2t

#
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Notes for Lecture 20 Mon, 3/17/2025

Application of variation of constants: the second order case

Review. In Theorem 96 we showed that y 0=A(t) y+ f(t) has the particular solution

yp(t)=�(t)
Z
�(t)¡1f(t)dt;

where �(t) is a fundamental matrix solution to y 0=A(t) y.

Let us apply this result to the case of a second-order LDE

y 00+P (t)y 0+Q(t)y=F (t):

We can write this DE as a first-order system by introducing the vector y=
�
y
y 0

�
:

y 0=
�

0 1
¡Q(t) ¡P (t)

�
y+

�
0

F (t)

�
If the second-order homogeneous DE (that is, y 00 + P (t)y 0 + Q(t)y = 0) has general solution
C1y1(t)+C2y2(t), then a fundamentral matrix for the first-order homogeneous system is

�(t)=
�
y1 y2
y1
0 y2

0

�
(recall that each column of �(t) represents a solution y of the system). Our formula from
Theorem 96 now gives us a particular solution of the inhomogeneous system:

yp(t) = �(t)
Z
�(t)¡1f(t)dt

=
�
y1 y2
y1
0 y2

0

�Z
1

y1y2
0 ¡ y1

0y2

"
y2
0 ¡y2

¡y10 y1

#�
0
F

�
dt

=
�
y1 y2
y1
0 y2

0

�Z
F

y1y2
0 ¡ y1

0y2

�
¡y2
y1

�
dt

=
Z

¡y2F
y1y2

0 ¡ y1
0y2

dt
�
y1
y1
0

�
+
Z

y1F
y1y2

0 ¡ y1
0y2

dt
�
y2
y2
0

�
The first entry of yp is the corresponding particular solution to the second-order inhomogeneous
DE:

yp(t)=C1(t)y1(t)+C2(t)y2(t); C1(t)=
Z
¡y2(t)F (t)

W (t)
dt; C2(t)=

Z
y1(t)F (t)
W (t)

dt:

where W (t)= y1(t)y20(t)¡ y1
0(t)y2(t) is the Wronskian.

Armin Straub
straub@southalabama.edu

52



Some special functions and the power series method

Review: power series

Definition 100. A function y(x) is analytic around x=x0 if it has a power series

y(x)=
X
n=0

1

an(x¡x0)n:

Note. In the next theorem, we will see that this power series is the Taylor series of y(x) around x= x0.

Power series are very pleasant to work with because they behave just like polynomials. For instance,
we can differentiate and integrate them:

� If y(x)=
X
n=0

1

an(x¡x0)n, then y 0(x)=
X
n=1

1

nan(x¡x0)n¡1 (another power series!).

We can rewrite the series as y 0(x)=
X
n=1

1
nan(x¡x0)n¡1=

X
n=0

1
(n+1)an+1(x¡x0)n.

The result is a power series just like the one we started with. Likewise, for higher derivatives.

�
Z
y(x)dx=

X
n=0

1
an
n+1

(x¡x0)n+1+C

Theorem 101. If y(x) is analytic around x=x0, then y(x) is infinitely differentiable and

y(x)=
X
n=0

1

an(x¡x0)n with an=
y(n)(x0)

n!
:

Caution. Analyticity is needed in this theorem; being infinitely differentiable is not enough. For instance, y(x)=
e¡1/x

2
is infinitely differentiable around x=0 (and everywhere else). However, y(n)(0)= 0 for all n.

In particular, if y(x) is analytic at x=0, then

y(x)=
X
n=0

1
y(n)(0)
n!

xn= y(0)+ y 0(0)x+ 1
2
y 00(0)x2+ 1

6
y 000(0)x3+ :::

We have already seen the following example.

Example 102. ex=
X
n=0

1
xn

n!
= 1+x+ 1

2
x2+ 1

3!
x3+ :::

Once again, notice how the power series clearly has the property that y 0= y (as well as y(0)= 1).

It follows from here that, for instance, e2x=
X
n=0

1
(2x)n

n!
= 1+2x+2x2+

4
3
x3+ :::

Example 103. Determine the power series for 7e3x (at x=0).
Solution. Instead of starting from scratch, we can use that ex=

P
n=0
1 xn

n!
to conclude that

7e3x=7
X
n=0

1
(3x)n

n!
=
X
n=0

1
7 � 3n
n!

xn=7+ 21x+ 63
2
x2+

63
2
x3+

189
8
x4+ :::
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Power series solutions to DE

Given any DE, we can approximate analytic solutions by working with the first few terms of the
power series.

Example 104. (Airy equation, part I) Let y(x) be the unique solution to the IVP y 00 = xy,
y(0)= a, y 0(0)= b. Determine the first several terms (up to x6) in the power series of y(x).
Solution. (successive differentiation) From the DE, y 00(0)= 0 � y(0)=0.
Differentiating both sides of the DE, we obtain y 000= y+ xy0 so that y 000(0)= y(0)+0 � y 0(0)= a.

Likewise, y(4)=2y 0+ xy 00 shows y(4)(0)= 2y0(0)=2b.

Continuing, y(5)=3y 00+xy 000 so that y(5)(0)=3y 00(0)= 0.

Continuing, y(6)=4y 000+xy(4) so that y(6)(0)=4y 000(0)= 4a.

Hence, y(x)= a+ bx+
1

2
y 00(0)x2+

1

6
y000(0)x3+

1

24
y(4)(0)x4+

1

120
y(5)(0)x5+

1

720
y(6)(0)x6+ :::

= a+ bx+
a

6
x3+

b

12
x4+

a

180
x6+ :::

Comment. Do you see the general pattern? We will revisit this example soon.

Solution. (plug in power series) The powers series y = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + ::: becomes

y= a+ bx+ a2x
2+ a3x

3+ a4x
4+ ::: because of the initial conditions.

To determine a2; a3; a4; a5; a6, we equate the coefficients of:

y 00 = 2a2+6a3x+ 12a4x2+ 20a5x3+ 30a6x4+ :::

xy = ax+ bx2+ a2x
3+ a3x

4+ :::

We find 2a2=0, 6a3= a, 12a4= b, 20a5= a2, 30a6= a3.

So a2=0, a3=
a

6
, a4=

b

12
, a5=

a2
20
=0, a6=

a3
30
=

a

180
. Hence, y(x)= a+ bx+

a

6
x3+

b

12
x4+

a

180
x6+ :::
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Notes for Lecture 21 Wed, 3/19/2025

Review. If y(x) is �nice� at x=x0 (i.e. analytic around x=x0), then

y(x)=
X
n=0

1

an(x¡x0)n with an=
y(n)(x0)

n!
:

In particular, at x=0,

y(x)=
X
n=0

1
y(n)(0)

n!
xn= y(0)+ y 0(0)x+ 1

2
y 00(0)x2+ 1

6
y 000(0)x3+ :::

Notation. When working with power series
P

n=0
1 anx

n, we sometimes write O(xn) to indicate
that we omit terms that are multiples of xn:

For instance. ex=1+x+
1

2
x2+O(x3) or cos(x)= 1¡ 1

2
x2+

1

24
x4+O(x6).

Example 105. Let y(x) be the unique solution to the IVP y 0=x2+ y2, y(0)=1.
Determine the first several terms (up to x4) in the power series of y(x).
Solution. (successive differentiation�for humans) From the DE, y 0(0)= 02+ y(0)2=1.
Differentiating both sides of the DE, we obtain y 00=2x+2yy 0. In particular, y 00(0)= 2.
Continuing, y 000=2+2(y 0)2+2yy 00 so that y 000(0)= 2+2+2 � 2=8.

Likewise, y(4)=6y 0y 00+2yy 000 so that y(4)(0)= 12+ 16= 28.

Hence, y(x)= y(0)+ y0(0)x+
1

2
y 00(0)x2+

1

6
y 000(0)x3+

1

24
y(4)(0)x4+ :::=1+ x+x2+

4

3
x3+

7

6
x4+ :::

Comment. This approach requires the (symbolic) computation of intermediate derivatives. This is costly (even
just the size of the simplified formulas is quickly increasing) and so the solution below is usually preferable for
practical purposes. However, successive differentiation works well when working by hand.

Solution. (plug in power series�for computers) The powers series y= a0+ a1x+ a2x
2+ a3x

3+ a4x
4+ :::

simplifies to y=1+ a1x+ a2x
2+ a3x

3+ a4x
4+ ::: because of the initial condition.

Therefore, y 0= a1+2a2x+3a3x
2+4a4x

3+ :::

To determine a2; a3; a4; a5, we need to expand x2+ y2 into a power series:

y2=1+2a1x+(2a2+ a1
2)x2+(2a3+2a1a2)x

3+(2a4+2a1a3+ a2
2)x4+ ::: [we don't need the last term]

Equating coefficients of y 0 and x2+ y2, we find a1=1, 2a2=2a1, 3a3=1+2a2+ a1
2, 4a4=2a3+2a1a2.

So a1=1, a2=1, a3=
4

3
, a4=

7

6
and, hence, y(x)= 1+ x+x2+

4

3
x3+

7

6
x4+ :::

Below is a plot of y(x) (in blue) and our approximation:

-1 1

-1

1

2

3

4

Note how the approximation is very good close to 0 but does not provide us with a �global picture�.
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Example 106. Let y(x) be the unique solution to the IVP y 00= cos(x+ y), y(0)=0, y 0(0)=1.
Determine the first several terms (up to x5) in the power series of y(x).
Solution. (successive differentiation�for humans) From the DE, y 00(0)= cos(0+ y(0))= 1.
Differentiating both sides of the DE, we obtain y 000=¡sin(x+ y)(1+ y 0).
In particular, y 000(0)=¡sin(0+ y(0))(1+ y 0(0))= 0.

Likewise, y(4)=¡cos(x+ y)(1+ y 0)2¡ sin(x+ y)y 00 shows y(4)(0)=¡1 � 22¡ 0=¡4.
Continuing, y(5)= sin(x+ y)(1+ y 0)3¡ 3cos(x+ y)(1+ y0)y 00¡ sin(x+ y)y 000 so that y(5)(0)=¡6.

Hence, y(x)=x+
1

2
y 00(0)x2+

1

6
y000(0)x3+

1

24 y
(4)(0)x4+

1

120 y
(5)(0)x5+ :::= x+

1

2
x2¡ 1

6
x4¡ 1

20x
5+ :::

Solution. (plug in power series�for computers) The powers series y= a0+ a1x+ a2x
2+ a3x

3+ a4x
4+ :::

simplifies to y= x+ a2x
2+ a3x

3+ a4x
4+ ::: because of the initial conditions.

Therefore, y 0=1+2a2x+3a3x
2+4a4x

3+ ::: and y 00=2a2+6a3x+ 12a4x2+ 20a5x3+ :::

To determine a2; a3; a4; a5, we need to expand cos(x+ y) into a power series:

Recall that cos(x)= 1¡ 1

2
x2+

1

24x
4+ :::

Hence, cos(x+ y)= 1¡ 1

2
(x+ y)2+

1

24
(x+ y)4+ :::=1¡ 1

2
x2¡ xy¡ 1

2
y2+O(x4).

Since y2=(x+ a2x
2+ a3x

3+ :::)2= x2+2a2x
3+O(x4),

cos(x+ y)= 1¡ 1

2
x2¡x(x+ a2x

2)¡ 1

2
(x2+2a2x

3)+O(x4)= 1¡ 2x2¡ 2a2x3+O(x4).

Equating coefficients of y 00 and cos(x+ y), we find 2a2=1, 6a3=0, 12a4=¡2, 20a5=¡2a2.

So a2=
1

2
, a3=0, a4=¡

1

6
, a5=¡

1

20
and, hence, y(x)= x+

1

2
x2¡ 1

6
x4¡ 1

20
x5+ :::

Below is a plot of y(x) (in blue) and our approximation:

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3
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Power series solutions to linear DEs

Note how in the last two examples the �plug in power series� approach was complicated by the
fact that the DE was not linear (we had to expand y2 as well as cos(x+ y), respectively).
For linear DEs, this complication does not arise and we can readily determine the complete power
series expansion of analytic solutions (with a recursive description of the coefficients).

Example 107. (Airy equation, part II) Let y(x) be the unique solution to the IVP y 00= xy,
y(0)= a, y 0(0)= b. Determine the power series of y(x).
Solution. (plug in power series) Let us spell out the power series for y; y 0; y 00 and xy:

y(x)=
X
n=0

1
anx

n

y0(x)=
X
n=1

1
nanx

n¡1=
X
n=0

1
(n+1)an+1x

n

y00(x)=
X
n=2

1
n(n¡ 1)anxn¡2=

X
n=0

1
(n+2)(n+1)an+2x

n

xy(x)=
X
n=0

1
anx

n+1=
X
n=1

1
an¡1x

n

Hence, y00=xy becomes
X
n=0

1
(n+2)(n+1)an+2x

n=
X
n=1

1
an¡1xn. We compare coefficients of xn:

� n=0: 2 � 1a2=0, so that a2=0.

� n>1: (n+2)(n+1)an+2= an¡1

Replacing n by n¡ 2, this is equivalent to n(n¡ 1)an= an¡3 for n>3.

In conclusion, y(x)=
X
n=0

1
anx

n with a0= a, a1= b, a2=0 as well as, for n>3, an= 1

n(n¡ 1)an¡3.

First few terms. In particular, y= a

�
1+

x3

2 � 3 +
x6

(2 � 3)(5 � 6) + :::

�
+ b

�
x+

x4

3 � 4 +
x7

(3 � 4)(6 � 7) + :::

�
.

Advanced. The solution with y(0)= 1

32/3¡(2/3)
and y 0(0)=¡ 1

31/3¡(1/3)
is known as the Airy function Ai(x).

[A more natural property of Ai(x) is that it satisfies y(x)! 0 as x!1.]
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Notes for Lecture 22 Fri, 3/21/2025

Once we have a power series solution y(x), a natural question is: for which x does the series
converge?
Recall. A power series y(x)=

P
n=0
1 an(x¡ x0)n has a radius of convergence R.

The series converges for all x with jx¡ x0j<R and it diverges for all x with jx¡ x0j>R.

Definition 108. Consider the linear DE y(n)+ pn¡1(x) y(n¡1)+ :::+ p1(x)y 0+ p0(x)y= f(x).
x0 is called an ordinary point if the coefficients pj(x), as well as f(x), are analytic at x=x0.

Otherwise, x0 is called a singular point.

Example 109. Determine the singular points of (x+2)y 00¡x2y 0+3y=0.

Solution. Rewriting the DE as y 00¡ x2

x+2
y0+

3

x+2
y=0, we see that the only singular point is x=¡2.

Example 110. Determine the singular points of (x2+1)y 000= y

x¡ 5 .

Solution. Rewriting the DE as y 000¡ 1

(x¡ 5)(x2+1)
y=0, we see that the singular points are x=�i; 5.

Theorem 111. Consider the linear DE y(n)+ pn¡1(x) y(n¡1)+ :::+ p1(x)y 0+ p0(x)y= f(x).
Suppose that x0 is an ordinary point and that R is the distance to the closest singular point.

Then any IVP specifying y(x0), y 0(x0), :::, y(n¡1)(x0) has a power series solution y(x) =P
n=0
1 an(x¡x0)n and that series has radius of convergence at least R.

In particular. The DE has a general solution consisting of n solutions y(x) that are analytic at x= x0.
Comment. Most textbooks only discuss the case of 2nd order DEs. For a discussion of the higher order case
(in terms of first order systems!) see, for instance, Chapter 4.5 in Ordinary Differential Equations by N. Lebovitz.
The book is freely available at: http://people.cs.uchicago.edu/~lebovitz/odes.html

Example 112. Find a minimum value for the radius of convergence of a power series solution to
(x+2)y 00¡x2y 0+3y=0 at x=3.

Solution. As before, rewriting the DE as y 00¡ x2

x+2
y 0+

3

x+2
y=0, we see that the only singular point is x=¡2.

Note that x=3 is an ordinary point of the DE and that the distance to the singular point is j3¡ (¡2)j=5.
Hence, the DE has power series solutions about x=3 with radius of convergence at least 5.

Example 113. Find a minimum value for the radius of convergence of a power series solution to
(x2+1)y 000= y

x¡ 5 at x=2.

Solution. As before, rewriting the DE as y 000¡ 1

(x¡ 5)(x2+1)
y=0, we see that the singular points are x=�i;5.

Note that x=2 is an ordinary point of the DE and that the distance to the nearest singular point is j2¡ ij= 5
p

(the distances are j2¡ 5j=3, j2¡ ij= j2¡ (¡i)j= 22+12
p

= 5
p

).
Hence, the DE has power series solutions about x=2 with radius of convergence at least 5

p
.

Example 114. (Airy equation, once more) Let y(x) be the solution to the IVP y 00 = xy,
y(0) = a, y 0(0) = b. Earlier, we determined the power series of y(x). What is its radius of
convergence?
Solution. y 00= xy has no singular points. Hence, the radius of convergence is 1. (In other words, the power
series converges for all x.)
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Notes for Lecture 23 Mon, 3/24/2025

Review. Theorem 111: If x0 is an ordinary point of a linear IVP, then it is guaranteed to have a
power series solution y(x)=

P
n=0
1 an(x¡x0)n.

Moreover, its radius of convergence is at least the distance between x0 and the closest singular point.

Example 115. Find a minimum value for the radius of convergence of a power series solution to
(x2+4)y 00¡ 3xy 0+ 1

x+1
y=0 at x=2.

Solution. The singular points are x=�2i;¡1. Hence, x= 2 is an ordinary point of the DE and the distance
to the nearest singular point is j2¡ 2ij= 22+22

p
= 8
p

(the distances are j2¡ (¡1)j=3, j2¡ (�2i)j= 8
p

).

By Theorem 111, the DE has power series solutions about x=2 with radius of convergence at least 8
p

.

Example 116. (caution!) Theorem 111 only holds for linear DEs! For nonlinear DEs, it is very
hard to predict whether there is a power series solution and what its radius of convergence is.
Consider, for instance, the nonlinear DE y 0¡ y2=0.

Its coefficients have no singularities. A solution to this DE is y(x)=
1

1¡ x =
X
n=0

1
xn (see Example 119), which

clearly has a problem at x=1 (the radius of convergence is 1).
On the other hand. y(x) also solves the linear DE (1¡x)y 0¡ y=0 (or, even simpler, the order 0 �differential�
equation (1¡x)y=1). Note how the DE has the singular point x=1. Theorem 111 then allows us to predict
that y(x) must have a power series with radius of convergence at least 1.

Example 117. (Bessel functions) Consider the DE x2y 00+ xy 0+ x2y = 0. Derive a recursive
description of a power series solutions y(x) at x=0.
Caution! Note that x=0 is a singular point (the only) of the DE. Theorem 111 therefore does not guarantee
a basis of power series solutions. [However, x= 0 is what is called a regular singular point; for these, we are
guaranteed one power series solution, as well as additional solutions expressed using logarithms and power series.]

Comment. We could divide the DE by x (but that wouldn't really change the computations below). The reason
for not dividing that x is that this DE is the special case �=0 of the Bessel equation x2y 00+xy 0+(x2¡�2)y=
0 (for which no such dividing is possible).

Solution. (plug in power series) Let us spell out power series for x2y;xy 0; x2y00 starting with y(x)=
X
n=0

1
anx

n:

x2y(x)=
X
n=0

1
anx

n+2=
X
n=2

1
an¡2xn

xy 0(x)=
X
n=1

1
nanx

n (because y 0(x)=
X
n=1

1
nanx

n¡1)

x2y00(x)=
X
n=2

1
n(n¡ 1)anxn (because y 00(x)=

X
n=2

1
n(n¡ 1)anxn¡2)

Hence, the DE becomes
X
n=2

1
n(n¡ 1)anxn+

X
n=1

1
nanx

n+
X
n=2

1
an¡2x

n=0. We compare coefficients of xn:

� n=1: a1=0

� n>2: n(n¡ 1)an+nan+ an¡2=0, which simplifies to n2an=¡an¡2.
It follows that a2n=

(¡1)n
4nn!2

a0 and a2n+1=0.

Observation. The fact that we found a1 = 0 reflects the fact that we cannot represent the general solution
through power series alone.

Comment. If a0=1, the function we found is a Bessel function and denoted as J0(x) =
X
n=0

1
(¡1)n
n!2

�
x
2

�
2n
.

The more general Bessel functions J�(x) are solutions to the DE x2y00+ xy 0+(x2¡�2)y=0.
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Example 118. (caution!) Consider the linear DE x2y 0= y¡x. Does it have a convergent power
series solution at x=0?
Important note. The DE x2y 0= y¡x has the singular point x=0. Hence, Theorem 111 does not apply.
Advanced. Moreover, in contrast to the previous example, x=0 is not a regular singular point. Indeed, as we
see below, there is no power series solution of the DE at all.

Solution. Let us look for a power series solution y(x)=
X
n=0

1
anx

n.

x2y0(x)= x2
X
n=1

1
nanx

n¡1=
X
n=1

1
nanx

n+1=
X
n=2

1
(n¡ 1)an¡1xn

Hence, x2y 0= y¡ x becomes
X
n=2

1
(n¡ 1)an¡1xn=

X
n=0

1
anx

n¡ x. We compare coefficients of xn:

� n=0: a0=0.

� n=1: 0= a1¡ 1, so that a1=1.

� n>2: (n¡ 1)an¡1= an, from which it follows that an=(n¡ 1)an¡1=(n¡ 1)(n¡ 2)an¡2= ���=
(n¡ 1)!a1=(n¡ 1)!.

Hence the DE has the �formal� power series solution y(x)=
X
n=1

1
(n¡ 1)!xn.

However, that series is divergent for all x=/ 0; that is, the radius of convergence is 0.

Inverses of power series

Example 119. (geometric series)
X
n=0

1

xn= 1
1¡x

Why? If y(x)=
X
n=0

1
xn, then xy= y¡ 1 (write down the power series for both sides!). Hence, y=

1
1¡ x .

Alternatively, start with y =
1

1¡ x
and note that y solves the order 0 �differential� (inhomogeneous) equation

(1¡x)y=1. We can then determine a power series solution as we did in Example 107 to find y=
P

n=0
1 xn.

Example 120. Derive a recursive description of the power series for y(x)= 1
1¡x¡x2 .

Solution. Note that y(x) satisfies the �differential� equation (1¡ x¡ x2)y=1 of order 0 (as such, we need 0
initial conditions). We can therefore determine a power series solution as we did in Example 107:

Write y(x)=
X
n=0

1
anx

n. Then

1= (1¡x¡x2)
X
n=0

1
anx

n =
X
n=0

1
anx

n¡
X
n=0

1
anx

n+1¡
X
n=0

1
anx

n+2

=
X
n=0

1
anx

n¡
X
n=1

1
an¡1xn¡

X
n=2

1
an¡2xn:

We compare coefficients of xn:

� n=0: 1= a0.

� n=1: 0= a1¡ a0, so that a1= a0=1.

� n>2: 0= an¡ an¡1¡ an¡2 or, equivalently, an= an¡1+ an¡2.

This is the recursive description of the Fibonacci numbers Fn! In particular an=Fn.
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The first few terms. 1

1¡x¡ x2 =1+ x+2x2+3x3+5x4+8x5+ 13x6+ :::

Comment. The function y(x) is said to be a generating function for the Fibonacci numbers.
Challenge. Can you rederive Binet's formula from partial fractions and the geometric series?

Example 121. (HW) Derive a recursive description of the power series for y(x)= 1+7x
1¡x¡ 2x2 .

Solution. Write y(x)=
X
n=0

1
anx

n. Then

1+7x=(1¡x¡ 2x2)
X
n=0

1
anx

n =
X
n=0

1
anx

n¡
X
n=0

1
anx

n+1¡ 2
X
n=0

1
anx

n+2

=
X
n=0

1
anx

n¡
X
n=1

1
an¡1xn¡ 2

X
n=2

1
an¡2xn:

We compare coefficients of xn:

� n=0: 1= a0.

� n=1: 7= a1¡ a0, so that a1=7+ a0=8.

� n>2: 0= an¡ an¡1¡ 2an¡2.

If we prefer, we can rewrite the final recurrence as an+2¡an+1¡ 2an=0 for n>0. The initial conditions are
a0=1, a1=8.
Comment. In terms of the recurrence operator N , the recurrence is (N2¡N ¡ 2)an=0.
Comment. As in Example 46, we can solve this recurrence and obtain a Binet-like formula for an. In this
particular case, we find an=3 � 2n¡ 2(¡1)n.
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Notes for Lecture 24 Wed, 3/26/2025

Power series of familiar functions

(Unless we specify otherwise, power series are meant to be about x=0.)

Example 122. Determine the power series for cos(x) at x=0.
Solution. Let y(x) = cos(x). After computing a few derivatives, we realize that y(2n)(x) = (¡1)ncos(x) and
y(2n+1)(x)=¡(¡1)nsin(x). In particular, y(2n)(0)= (¡1)n and y(2n+1)(0)= 0. It follows that

cos(x)=
X
n=0

1
y(n)(0)
n!

xn=
X
n=0

1
(¡1)n
(2n)!

x2n=1¡ x2

2
+
x4

4!
¡ x6

6!
+ :::

Comment. Note that the above observations on y(2n) and y(2n+1) simply reflect the fact that cos(x) is the
unique solution to the IVP y 00=¡y, y(0)=1, y 0(0)= 0.
Alternatively. We can also deduce the power series via Euler's formula: eix= cos(x)+ i sin(x). Since

eix=
X
n=0

1
(ix)n

n!
=
X
m=0

1
(ix)2m

(2m)!
+
X
m=0

1
(ix)2m+1

(2m+1)!
=
X
m=0

1
(¡1)mx2m
(2m)!

+ i
X
m=0

1
(¡1)mx2m+1

(2m+1)!
,

we conclude that cos(x)=
X
n=0

1
(¡1)n
(2n)!

x2n and sin(x)=
X
n=0

1
(¡1)n
(2n+1)!

x2n+1.

Example 123. Determine the first several terms in the power series of sin(2x3) at x=0.
Solution. (direct�unpleasant) If f(x)=sin(2x3), then f 0(x)=6x2cos(2x3) as well as f 00(x)=12xcos(2x3)¡
36x4 sin(2x3) and f 000(x)= 12cos(2x3)¡ 216x3 sin(2x3)+ 216x6 cos(2x3).
In particular, f(0)= 0, f 0(0)=0, f 00(0)= 0 and f 000(0)= 12.

It follows that f(x)= f(0)+ f 0(0)x+
1

2
f 00(0)x2+ :::=0+0x+0x2+

12
3!
x3+ :::=2x3+ :::

Solution. (via series for sine) As done in the previous example for cos(x), we can derive that

sin(x)=
X
n=0

1
(¡1)n
(2n+1)!

x2n+1= x¡ 1
6
x3+

1
120

x5¡ :::

It follows that

sin(2x3) =
X
n=0

1
(¡1)n
(2n+1)!

(2x3)2n+1=
X
n=0

1
(¡1)n22n+1
(2n+1)!

x6n+3

=
21

1!
x3¡ 23

3!
x9+

25

5!
x15¡ :::=2x3¡ 4

3
x9+

4
15
x15¡ :::

Example 124. The hyperbolic cosine cosh(x) is defined to be the even part of ex. In other
words, cosh(x)= 1

2
(ex+ e¡x). Determine its power series.

Solution. It follows from ex=
X
n=0

1
xn

n!
that cosh(x)=

X
n=0

1
x2n

(2n)!
.

Comment. Note that cosh(ix)= cos(x) (because cos(x)= 1

2
(eix+ e¡ix)).

Comment. The hyperbolic sine sinh(x)=
X
n=0

1
x2n+1

(2n+1)!
is similarly defined to be the odd part of ex.
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Example 125. Determine a power series for
1

1+x2
.

Solution. Replace x with ¡x2 in 1
1¡ x =

X
n=0

1
xn (geometric series!) to get 1

1+ x2
=
X
n=0

1
(¡1)nx2n.

Example 126. Determine a power series for arctan(x).

Solution. Recall that arctan(x)=
Z

dx

1+x2
+C. Hence, we need to integrate 1

1+ x2
=
X
n=0

1
(¡1)nx2n.

It follows that arctan(x)=
X
n=0

1
(¡1)nx

2n+1

2n+1
+C. Since arctan(0)= 0, we conclude that C =0.

Example 127. Determine a power series for ln(x) around x=1.
Solution. This is equivalent to finding a power series for ln(x+1) around x=0 (see the final step).

Observe that ln(x+1)=

Z
dx
1+ x

+C and that
1

1+ x
=
X
n=0

1
(¡1)nxn.

Integrating, ln(x+1)=
X
n=0

1
(¡1)nx

n+1

n+1
+C. Since ln(1)=0, we conclude that C=0.

Finally, ln(x+1)=
X
n=0

1
(¡1)nx

n+1

n+1
is equivalent to ln(x)=

X
n=0

1
(¡1)n
n+1

(x¡ 1)n+1.

Comment. Choosing x=2 in ln(x)=
X
n=0

1
(¡1)n
n+1

(x¡1)n+1 results in ln(2)=
X
n=0

1
(¡1)n
n+1

=1¡ 1
2
+
1
3
¡ 1
4
+ :::.

The latter is the alternating harmonic sum.
Can you see from the series for ln(x) why the harmonic sum 1+

1

2
+
1

3
+
1

4
+ ::: diverges?

Example 128. (error function) Determine a power series for erf(x)= 2
�

p
Z
0

x

e¡t
2
dt.

Solution. It follows from ex=
X
n=0

1
xn

n!
that e¡t

2
=
X
n=0

1
(¡1)nt2n

n!
.

Integrating, we obtain erf(x)= 2

�
p

Z
0

x

e¡t
2
dt=

2

�
p

X
n=0

1
(¡1)nx2n+1
n!(2n+1)

.

Example 129. Determine the first several terms (up to x5) in the power series of tan(x).
Solution. Observe that y(x)= tan(x) is the unique solution to the IVP y0=1+ y2, y(0)= 0.
We can therefore proceed to determine the first few power series coefficients as we did earlier.
That is, we plug y= a0+ a1x+ a2x

2+ a3x
3+ a4x

4+ ::: into the DE. Note that y(0)=0 means a0=0.
y 0= a1+2a2x+3a3x

2+4a4x
3+5a5x

4+ :::

1+ y2=1+ (a1x+ a2x
2+ a3x

3+ :::)2=1+ a1
2x2+(2a1a2)x

3+(2a1a3+ a2
2)x4+ :::

Comparing coefficients, we find: a1=1, 2a2=0, 3a3= a1
2, 4a4=2a1a2, 5a5=2a1a3+ a2

2.

Solving for a2; a3; :::, we conclude that tan(x)= x+
x3

3
+
2x5

15
+
17x7

315
+ :::

Comment. The fact that tan(x) is an odd function translates into an= 0 when n is even. If we had realized
that at the beginning, our computation would have been simplified.

Advanced comment. The full power series is tan(x)=
X
n=1

1
(¡1)n¡122n(22n¡ 1)B2n

(2n)!
x2n¡1.

Here, the numbers B2n are (rather mysterious) rational numbers known as Bernoulli numbers.
The radius of convergence is �/2. Note that this is not at all obvious from the DE y 0=1+ y2. This illustrates
the fact that nonlinear DEs are much more complicated than linear ones. (There is no analog of Theorem 111.)
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Notes for Lecture 25 Fri, 3/28/2025

Fourier series

The following amazing fact is saying that any 2�-periodic function can be written as a sum of
cosines and sines.
Advertisement. In Linear Algebra II, we will see the following natural way to look at Fourier series: the functions
1, cos(t), sin(t), cos(2t), sin(2t), ::: are orthogonal to each other (for that to make sense, we need to think of
functions as vectors and introduce a natural inner product). In fact, they form an orthogonal basis for the space
of piecewise smooth functions. In that setting, the formulas for the coefficients an and bn are nothing but the
usual projection formulas for orthogonal projection onto a single vector.

Theorem 130. Every� 2�-periodic function f can be written as a Fourier series

f(t)= a0
2
+
X
n=1

1

(ancos(nt)+ bnsin(nt)):

Technical detail�: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity of f , then the Fourier series converges to the average f(t¡)+ f(t+)

2
.

The Fourier coefficients an, bn are unique and can be computed as

an=
1
�

Z
¡�

�

f(t)cos(nt)dt; bn=
1
�

Z
¡�

�

f(t)sin(nt)dt:

Comment. Another common way to write Fourier series is f(t)=
X

n=¡1

1
cn e

int.

These two ways are equivalent; we can convert between them using Euler's identity eint= cos(nt)+ i sin(nt).

Definition 131. Let L> 0. f(t) is L-periodic if f(t+L)= f(t) for all t. The smallest such L
is called the (fundamental) period of f .

Example 132. The fundamental period of cos(nt) is 2�/n.

Example 133. The trigonometric functions cos(nt) and sin(nt) are 2�-periodic for every integer
n. And so are their linear combinations. (Thus, 2�-periodic functions form a vector space!)

Example 134. Find the Fourier series of the 2�-periodic function f(t) defined by

f(t)=

8>><>>:
¡1; for t2 (¡�; 0),
+1; for t2 (0; �);
0; for t=¡�; 0; �:

−π π 2π 3π 4π
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Solution. We compute a0=
1
�

Z
¡�

�

f(t)dt=0, as well as

an =
1
�

Z
¡�

�

f(t)cos(nt)dt= 1
�

�
¡
Z
¡�

0

cos(nt)dt+
Z
0

�

cos(nt)dt
�
=0

bn =
1
�

Z
¡�

�

f(t)sin(nt)dt= 1
�

�
¡
Z
¡�

0

sin(nt)dt+
Z
0

�

sin(nt)dt
�
=

2
�n

[1¡ cos(n�)]

=
2
�n

[1¡ (¡1)n] =
(

4

�n
if n is odd

0 if n is even
:

In conclusion, f(t)=
X
n=1
n odd

1
4
�n

sin(nt)= 4
�

�
sin(t)+ 1

3
sin(3t)+ 1

5
sin(5t)+ :::

�
.

−π π 2π 3π 4π

Observation. The coefficients an are zero for all n if and only if f(t) is odd.
Comment. The value of f(t) for t=¡�; 0; � is irrelevant to the computation of the Fourier series. They are
chosen so that f(t) is equal to the Fourier series for all t (recall that, at a jump discontinuity t, the Fourier series

converges to the average f(t¡)+ f(t+)

2
).

Comment. Plot the (sum of the) first few terms of the Fourier series. What do you observe? The �overshooting�
is known as the Gibbs phenomenon: https://en.wikipedia.org/wiki/Gibbs_phenomenon

Comment. Set t= �

2
in the Fourier series we just computed, to get Leibniz' series �=4[1¡ 1

3
+
1

5
¡ 1

7
+ :::].

For such an alternating series, the error made by stopping at the term 1/n is on the order of 1/n. To compute
the 768 digits of � to get to the Feynman point (3.14159265:::721134999999:::), we would (roughly) need
1/n<10¡768, or n>10768. That's a lot of terms! (Roger Penrose, for instance, estimates that there are about
1080 atoms in the observable universe.)
Remark. Convergence of such series is not completely obvious. (Do you recall, for instance, the alternating sign
test from Calculus II?) For instance, the (odd part of) the harmonic series 1+ 1

3
+
1

5
+
1

7
+ ��� diverges.

Fourier series with general period

The case of 2�-periodic functions generalizes easily to the case of general periodic functions.

Note that cos(�t/L) and sin(�t/L) have period 2L.

Theorem 135. Every� 2L-periodic function f can be written as a Fourier series

f(t)= a0
2
+
X
n=1

1 �
ancos

�
n�t
L

�
+ bnsin

�
n�t
L

��
:

Technical detail�: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity, then the Fourier series converges to the average f(t¡)+ f(t+)

2
.

The Fourier coefficients an, bn are unique and can be computed as

an=
1
L

Z
¡L

L

f(t)cos
�
n�t
L

�
dt; bn=

1
L

Z
¡L

L

f(t)sin
�
n�t
L

�
dt:
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Comment. This follows from Theorem 130 because, if f(t) has period 2L, then f~(t) := f(Lt/�) has period 2�.

Example 136. Find the Fourier series of the 2-periodic function g(t)=

8>><>>:
¡1 for t2 (¡1; 0)
+1 for t2 (0; 1)
0 for t=¡1; 0; 1

.

Solution. Instead of computing from scratch, we can use the fact that g(t)= f(�t), with f as in the previous

example, to get g(t)= f(�t)=
X
n=1
n odd

1
4
�n

sin(n�t).
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Notes for Lecture 26 Mon, 3/31/2025

Fourier cosine series and Fourier sine series

Suppose we have a function f(t) which is defined on a finite interval [0; L]. Depending on the
kind of application, we can extend f(t) to a periodic function in three natural ways; in each case,
we can then compute a Fourier series for f(t) (which will agree with f(t) on [0; L]).
Comment. Here, we do not worry about the definition of f(t) at specific individual points like t=0 and t=L,
or at jump discontinuities. Recall that, at a discontinuity, a Fourier series takes the average value.

(a) We can extend f(t) to an L-periodic function.

In that case, we obtain the Fourier series f(t)= a0
2
+
X
n=1

1 �
ancos

�
2�nt
L

�
+ bnsin

�
2�nt
L

��
.

(b) We can extend f(t) to an even 2L-periodic function.

In that case, we obtain the Fourier cosine series f(t)= a~0
2
+
X
n=1

1
a~ncos

�
�nt
L

�
.

(c) We can extend f(t) to an odd 2L-periodic function.

In that case, we obtain the Fourier sine series f(t)=
X
n=1

1
b~nsin

�
�nt
L

�
.

Example 137. Consider the function f(t)= 4¡ t2, defined for t2 [0; 2].

(a) Sketch the 2-periodic extension of f(t).

(b) Sketch the 4-periodic even extension of f(t).

(c) Sketch the 4-periodic odd extension of f(t).

Solution. The 2-periodic extension as well as the 4-periodic even extension:

-8 -6 -4 -2 0 2 4 6 8

2

4

-8 -6 -4 -2 0 2 4 6 8

2

4

The 4-periodic odd extension:

-8 -6 -4 -2 2 4 6 8

-4

-2

2

4
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Example 138. As in the previous example, consider the function f(t) = 4 ¡ t2, defined for
t2 [0; 2].

(a) Let F (t) be the Fourier series of f(t) (meaning the 2-periodic extension of f(t)). Deter-

mine F (2), F
�
5

2

�
and F

�
¡1

2

�
.

(b) Let G(t) be the Fourier cosine series of f(t). Determine G(2), G
�
5

2

�
and G

�
¡1

2

�
.

(c) Let H(t) be the Fourier sine series of f(t). Determine H(2), H
�
5

2

�
and H

�
¡1

2

�
.

Solution.

(a) Note that the extension of f(t) has discontinuities at :::;¡2;0;2;4; ::: (see plot in previous example) and
recall that the Fourier series takes average values at these discontinuities:
F (2)=

1

2
(F (2¡)+F (2+))=

1

2
(0+4)=2

F
�
5

2

�
=F

�
5

2
¡ 2

�
= f

�
1

2

�
=

15
4

F
�
¡1

2

�
=F

�
¡1

2
+2

�
= f

�
3

2

�
=
7

4

(b) G(2)= f(2)=0 (see plot!)

[Note that G(2+) =G(2+¡ 4) =G(¡2+) =G(2¡) where we used that G is even in the last step; in
fact, we can show like this that the Fourier cosine series of a continuous function is always continuous.]

G
�
5

2

�
=G

�
5

2
¡ 4

�
=G

�
¡3

2

�
= f

�
3

2

�
=
7

4

G
�
¡1

2

�
=

even
G
�
1

2

�
= f

�
1

2

�
=

15
4

(c) H(2)= 1

2
(f(2¡)¡ f(2¡))= 0 (see plot!)

[Note that H(2+)=H(2+¡ 4)=H(¡2+)=¡H(2¡) where we used that H is odd in the last step; in
fact, we can show like this that the Fourier sine series of a continuous function is always 0 at the jumps.]

H
�
5

2

�
=H

�
5

2
¡ 4

�
=H

�
¡3

2

�
=¡f

�
3

2

�
=¡7

4

H
�
¡1

2

�
=
odd

¡H
�
1

2

�
=¡f

�
1

2

�
=¡15

4

Differentiating and integrating Fourier series

Theorem 139. If f(t) is continuous and f(t)= a0
2
+
P

n=1
1 ¡

ancos
¡ n�t

L

�
+ bnsin

¡ n�t
L

��
, then�

f 0(t)=
P

n=1
1 ¡ n�

L
bncos

¡ n�t
L

�
¡ n�

L
ansin

¡ n�t
L

��
(i.e., we can differentiate termwise).

Technical detail�: f 0 needs to be, e.g., piecewise smooth (so that it has a Fourier series itself).
Caution! We cannot simply differentiate termwise if f(t) is lacking continuity. See the next example.
Comment. On the other hand, we can integrate termwise (going from the Fourier series of f 0= g to the Fourier
series of f =

R
g because the latter will be continuous). This is illustrated in the example after the next.

Example 140. (caution!) The function g(t) =
P

n odd
4

�n
sin(n�t) from Example 136 is not

continuous. For all values, except the discontinuities, we have g 0(t) = 0. On the other hand,
differentiating the Fourier series termwise, results in 4

P
n odd cos(n�t), which diverges for most

values of t (that's easy to check for t= 0). This illustrates that we cannot apply Theorem 139
because g(t) is lacking continuity.
[The issues we are facing here can be fixed by generalizing the notion of function to distributions. (Maybe you
have heard of the Dirac delta �function�.)]
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Example 141. Let h(t) be the 2-periodic function with h(t) = jtj for t 2 [¡1; 1]. Compute the
Fourier series of h(t).
Solution. We could just use the integral formulas to compute an and bn. Since h(t) is even (plot it!), we will
find that bn=0. Computing an is left as an exercise.

Solution. Note that h(t) =
�
¡t for t2 (¡1; 0)
+t for t2 (0; 1) is continuous and h0(t) = g(t), with g(t) as in Example 136.

Hence, we can apply Theorem 139 to conclude

h0(t)= g(t)=
X
n=1
n odd

1
4
�n

sin(n�t) =) h(t)=
X
n=1
n odd

1
4
�n

�
¡ 1
�n

�
cos(n�t)+C;

where C =
a0
2
=
1
2

Z
¡1

1

h(t)dt=
1
2
is the constant of integration. Thus, h(t)= 1

2
¡
X
n=1
n odd

1
4

�2n2
cos(n�t).

Remark. Note that t=0 in the last Fourier series, gives us �2

8
=
1

1
+

1

32
+

1

52
+ :::. As an exercise, you can try

to find from here the fact that
P

n>1
1

n2
=
�2

6
. Similarly, we can use Fourier series to find that

P
n>1

1

n4
=
�4

90
.

Just for fun. These are the values �(2) and �(4) of the Riemann zeta function �(s). No such evaluations are
known for �(3); �(5); ::: and we don't even know (for sure) whether these are rational numbers. Nobody believes
these to be rational numbers, but it was only in 1978 that Apéry proved that �(3) is not a rational number.

Armin Straub
straub@southalabama.edu

69



Notes for Lecture 27 Wed, 4/2/2025

Review: the motion of a mass on a spring

The motion of a mass m attached to a spring is described by

my 00+ ky=0

where y is the displacement from the equilibrium position and k > 0 is the spring constant.
Why? This follows from Hooke's law F =¡ky combined with Newton's second law F =ma=my 00. (Note
that the minus sign is needed because the force on the mass is in direction opposite to the displacement.)
Comment. By measuring y as the displacement from equilibrium, it doesn't matter whether the mass is attached
horizontally or vertically (gravity is taken into account by the extra stretch in the spring due to the mass).

Solving this DE, we find that the general solution is

y(t)=A cos(!t)+B sin(!t)

where != k/m
p

(note that the characteristic roots are �i k

m

q
). We observe that:

� The motion y(t) is periodic with period 2�/!. Equivalently, its (circular) frequency is !.
This follows from the fact that both cos(t) and sin(t) have period 2�.

� The amplitude of the motion y(t) is A2+B2
p

.

This follows from the fact that y(t) =A cos(!t) +B sin(!t) = r cos(!t¡ �) (can you explain/prove
this?) where (r;�) are the polar coordinates for (A;B). In particular, the amplitude is r= A2+B2

p
.

More generally, the motion of a mass m on a spring, with damping and with an external force
f(t) taken into account, can be modeled by the DE

my 00+ dy 0+ ky= f(t):

Note that each term is representing a force: my 00=ma is the force due to Newton's second law (F =ma), the
term dy 0 models damping (proportional to the velocity), the term ky represents the force due to Hooke's law,
and the term f(t) represents an external force that acts on the mass at time t.

Fourier series and linear differential equations

In the following examples, we consider inhomogeneous linear DEs p(D)y=F (t) where F (t) is a
periodic function that can be expressed as a Fourier series. We first review the notion of resonance
(and how to predict it) and then solve such DEs.

Example 142. Consider the linear DE my 00+ ky = cos(!t). For which (external) frequencies
!> 0 does resonance occur?
Solution. The characteristic roots (the roots of p(D)=mD2+k) are�i k/m

p
. Correspondingly, the solutions

of the homogeneous equationmy 00+ky=0 are combinations of cos(!0t) and sin(!0t), where !0= k/m
p

(!0
is called the natural frequency of the DE). Resonance occurs in the case != !0 when the external frequency
matches the natural frequency.
Review. If !=/ !0 (overlapping roots), then there is particular solution of the form yp(t)=Acos(!t)+B sin(!t)
(for specific values of A and B). The general solution is y(t) = A cos(!t) + B sin(!t) + C1cos(!0t) +
C2sin(!0t), which is a bounded function of t. In contrast, if ! = !0, then the general solution is y(t) =
(C1+At)cos(!0t)+ (C2+Bt)sin(!0t) and this function is unbounded.
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Example 143. A mass-spring system is described by the DE 2y 00+ 32y=
X
n=1

1
cos(n!t)
n2+1

.

For which ! does resonance occur?
Solution. The roots of p(D) = 2D2 + 32 are �4i, so that that the natural frequency is 4. Resonance
therefore occurs if 4 equals n! for some n 2 f1; 2; 3; :::g. Equivalently, resonance occurs if != 4/n for some
n2f1; 2; 3; :::g.

Example 144. A mass-spring system is described by the DE my 00+ y=
X
n=1

1
1
n2

sin
�
nt
3

�
.

For which m does resonance occur?
Solution. The roots of p(D) =mD2 + 1 are �i/ m

p
, so that the natural frequency is 1/ m

p
. Resonance

therefore occurs if 1/ m
p

= n/3 for some n 2 f1; 2; 3; :::g. Equivalently, resonance occurs if m= 9/n2 for
some n2f1; 2; 3; :::g.

Example 145. A mass-spring system is described by the DE 3y 00+ ky=F (t) where F (t) is an
external force with period 5. For which values of k can resonance occur?

Solution. F (t) has a Fourier series of the form F (t)=
a0
2
+
X
n=1

1 �
ancos

�
2�nt
5

�
+ bnsin

�
2�nt
5

��
.

The roots of p(D)=3D2+k are �i k

3

q
, so that the natural frequency is k

3

q
. Resonance therefore can occur

if k

3

q
=
2�n

5
for some n2f1;2;3; :::g. Equivalently, resonance can occur if k= 12�2n2

25
for some n2f1;2;3; :::g.

Note. Resonance will occur for k= 12�2n2

25
unless both of the corresponding Fourier coefficients an and bn are 0.

Note. The term a0/2 in F (t) corresponds to a characteristic root of 0 and cannot lead to resonance.

Though it requires some effort, we already know how to solve p(D)y = F (t) for periodic forces
F (t), once we have a Fourier series for F (t).
The same approach works for linear differential equations of higher order, or even systems of equations.

Example 146. Find a particular solution of 2y 00 + 32y = F (t), with F (t) =
�
10 if t2 (0; 1)
¡10 if t2 (1; 2) ,

extended 2-periodically.
Solution.

� From earlier, we already know F (t)= 10
P

n odd
4

�n
sin(�nt).

� We next solve the equation 2y00 + 32y = sin(�nt) for n = 1; 3; 5; :::. First, we note that the external
frequency is �n, which is never equal to the natural frequency !0 = 4. Hence, there exists a particular
solution of the form yp(t)=A cos(�nt)+B sin(�nt). To determine the coefficients A;B, we plug into
the DE. Noting that yp

00=¡�2n2 yp (can you see why without computing two derivatives?), we get

2yp
00+ 32yp=(32¡ 2�2n2)(A cos(�nt)+B sin(�nt))=

!
sin(�nt):

We conclude A=0 and B=
1

32¡ 2�2n2 , so that yp(t)=
sin(�nt)
32¡ 2�2n2 .

� We combine the particular solutions found in the previous step, to see that

2y00+ 32y= 10
X
n=1
n odd

1
4
�n

sin(�nt) is solved by yp= 10
X
n=1
n odd

1
4
�n

sin(�nt)
32¡ 2�2n2 :
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Example 147. Find a particular solution of 2y 00+32y=F (t), with F (t) the 2�-periodic function
such that F (t)= 10t for t2 (¡�; �).
Solution.

� The Fourier series of F (t) is F (t)=
P

n=1
1 (¡1)n+1 20

n
sin(nt). [Exercise!]

� We next solve the equation 2y 00+32y= sin(nt) for n=1;2;3; :::. Note, however, that resonance occurs
for n = 4, so we need to treat that case separately. If n =/ 4 then we find, as in the previous example,
that yp(t)=

sin(nt)
32¡ 2n2 . [Note how this fails for n=4!]

For 2y 00+ 32y= sin(4t), we begin with yp=At cos(4t) +Bt sin(4t). Then yp
0 = (A+4Bt)cos(4t) +

(B ¡ 4At)sin(4t), and yp
00= (8B ¡ 16At)cos(4t) + (¡8A ¡ 16Bt)sin(4t). Plugging into the DE, we

get 2yp
00+32yp=16B cos(4t)¡16Asin(4t)=

!
sin(4t), and thusB=0, A=¡ 1

16
. So, yp=¡ 1

16
tcos(4t).

� We combine the particular solutions to get that our DE

2y 00+ 32y=¡5sin(4t)+
X
n=1
n=/ 4

1
(¡1)n+1 20

n
sin(nt)

is solved by

yp(t)=
5
16
t cos(4t)+

X
n=1
n=/ 4

1
(¡1)n+1 20

n
sin(nt)
32¡ 2n2 :

As in the previous example, this solution cannot really be simplified. Make some plots to appreciate the
dominating character of the term resulting from resonance!

Important comment. Note that the general solution is

y(t)=
5
16
t cos(4t)+

X
n=1
n=/ 4

1
(¡1)n+1 20

n
sin(nt)
32¡ 2n2 +C1cos(4t)+C2sin(4t)

and that it always features the resonant term.
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Notes for Lecture 28 Fri, 4/4/2025

Hyperbolic sine and cosine

Review. Euler's formula states that eit= cos(t)+ i sin(t).

Recall that a function f(t) is even if f(¡t)= f(t). Likewise, it is odd if f(¡t)=¡t.
Note that f(t) = tn is even if and only if n is even. Likewise, f(t) = tn is odd if and only if n is odd. That's
where the names are coming from.

Any function f(t) can be decomposed into an even and an odd part as follows:

f(t)= feven(t)+ fodd(t); feven(t)=
1
2
(f(t)+ f(¡t)); fodd(t)=

1
2
(f(t)¡ f(¡t)):

Verify that feven(t) indeed is even, and that fodd(t) indeed is an odd function (regardless of f(t)).

Example 148. The hyperbolic cosine, denoted cosh(t), is the even part of et. Likewise, the
hyperbolic sine, denoted sinh(t), is the odd part of et.

� Equivalently, cosh(t)= 1

2
(et+ e¡t) and sinh(t)= 1

2
(et¡ e¡t).

� In particular, et= cosh(t)+ sinh(t).
As recalled above, any function is the sum of its even and odd part.
Comparing with Euler's formula, we find cosh(it)= cos(t) and sinh(it)= i sin(t). This indicates that
cosh and sinh are related to cos and sin, as their name suggests (see below for the �hyperbolic� part).

� d

dt
cosh(t)= sinh(t) and d

dt
sinh(t)= cosh(t).

� cosh(t) and sinh(t) both satisfy the DE y 00= y.
We can write the general solution as C1et+C2e

¡t or, if useful, as C1 cosh(t)+C2 sinh(t).

� cosh(t)2¡ sinh(t)2=1
Verify this by substituting cosh(t)= 1

2
(et+ e¡t) and sinh(t)= 1

2
(et¡ e¡t).

Note that the equation x2¡ y2=1 describes a hyperbola (just like x2+ y2=1 describes a circle).

The above equation is saying that
�
x
y

�
=
�
cosh(t)
sinh(t)

�
is a parametrization of the hyperbola.

Comment. Circles and hyperbolas are conic sections (as are ellipses and parabolas).
Comment. Hyperbolic geometry plays an important role, for instance, in special relativity:
https://en.wikipedia.org/wiki/Hyperbolic_geometry

Homework. Write down the parallel properties of cosine and sine.

-2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-3.0

-2.0

-1.0

1.0
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sinh(x)
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Example 149. Write down a homogeneous linear differential equation satisfied by y(x)=5x2¡
3cosh(2x).
Comment. This is the same as finding an operator p(D) such that p(D)y=0.

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include 0;0;0;�2 (note
that cosh(2x)= 1

2
(e2x+ e¡2x) which contributes the roots �2).

Hence, the simplest differential equation is D3(D¡ 2)(D+2)y=0.

Comment. This is an order 5 differential equation. If we wanted to, we could multiply out D3(D¡2)(D+2)=

D3(D2¡ 4) =D5¡ 4D3 and write the differential equation in the �classical� form y(5)¡ 4y 000= 0. However,
there is typically no benefit in doing so because it is usually more useful to have the DE in factored form (so
that the characteristic roots can just be read off). In general, only multiply out factored expressions if there is
something to be gained from doing so!

Example 150. A homogeneous linear differential equation with constant coefficients is solved by
y(x)= 2e¡7xcos(3x)¡ 5x sinh(4x). Which characteristic roots must the DE have?

Solution. The characteristic roots of the differential equation must include ¡7� 3i;�4;�4.

Example 151. Consider the DE y 00¡ 2y 0+ y = 2x sinh(3x) + 7x2. What is the simplest form
(with undetermined coefficients) of a particular solution?

Solution. Since D2¡ 2D + 1= (D ¡ 1)2, the characteristic roots are 1; 1. The roots for the inhomogeneous
part are �3;�3; 0; 0; 0. Hence, there has to be a particular solution of the form yp= (A1+A2x) cosh(3x) +
(A3+A4x)sinh(3x)+A5+A6x+A7x

2.
(We can then plug into the DE to determine the (unique) values of the coefficients A1; A2; :::; A7.)
Comment. If we prefer, we can, of course, also express sinh(3x) in terms of exponentials. Then the DE becomes
y 00¡ 2y0+ y= xe3x¡ xe¡3x+7x2. The characteristic roots of the DE remain the same. The simplest form
of a particular solution now is yp=(B1+B2x)e

3x+(B3+B4x)e
¡3x+B5+B6x+B7x

2. Make sure that you
see that this is equivalent to our earlier form using cosh and sinh.
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Notes for Lecture 29 Mon, 4/7/2025

The fin equation from thermodynamics

The following is an example from thermodynamics. The governing differential equation is a second-
order DE that is like the equation describing the motion of a mass on a spring (my 00+ ky = 0)
except that one term has the opposite sign. Besides showcasing an application, we want to show
off how cosh and sinh are useful for writing certain solutions in a more pleasing form.
Let T (x) describe the temperature at position x in a fin with fin base at x=0 and fin tip at x=L.
For more context on fins: https://en.wikipedia.org/wiki/Fin_(extended_surface)

If we write �(x)=T (x)¡T1 for the temperature excess at position x (with T1 the external tem-
perature), then we find (under various simplifying assumptions) that the temperature distribution
in our fin satisfies the following DE, known as the fin equation:

d2�
dx2

¡m2�=0; m2= hP
kA

> 0:

� A is the cross-sectional area of the fin (assumed to be the same for all positions x).

� P is the perimeter of the fin (assumed to be the same for all positions x).

� k is the thermal conductivity of the material (assumed to be constant).

� h is the convection heat transfer coefficient (assumed to be constant).

Since the DE is homogeneous and linear with characteristic roots �m, the general solution is

�(x)=C1emx+C2e¡mx=D1cosh(mx)+D2sinh(mx):

The constants C1; C2 (or, equivalently, D1; D2) can then be found by imposing appropriate
boundary conditions at the fin base (x=0) and at the fin tip (x=L).
In practice, we often know the temperature at the fin base and therefore the temperature excess,
resulting in the boundary condition �(0)= �0. At the fin tip, common boundary conditions are:

� �(L)! 0 as L!1 (infinitely long fin)
In this case, the fin is so long that the temperature at the fin tip approaches the external temperature.
Mathematically, we get �(x)=Ce¡mx since emx!1 as x!1. It follows from �(0)=�0 that C=�0.

Thus, the temperature excess is �(x)= �0 e¡mx.

� � 0(L)= 0 (neglible heat loss at the fin tip, �adiabatic fin tip�)
This can be a more reasonable assumption than the infinitely long fin. Note that the total heat transfer
from the fin is proportional to its surface area. If the surface area at the fin tip is a negligible fraction
of the total surface area, then it is reasonable to assume that �0(L)= 0.

In this case, the temperature excess is �(x)= �0
cosh(m(L¡x))

cosh(mL)
.

Check! Instead of computing this from scratch (do that as well, later!), check that this indeed solves
the DE as well as the boundary conditions �(0)=�0 and �0(L)=0. This should be a rather quick check!

� �(L)= �L (specified temperature at fin tip)

In this case, the temperature excess is �(x)= �L sinh(mx)+ �0 sinh(m(L¡x))
sinh(mL)

.

Check! Again, check that this indeed solves the DE as well as the boundary conditions �(0)= �0 and
�(L)= �L. Once more, this should be a quick and pleasant check.
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Excursion: Euler's identity

Theorem 152. (Euler's identity) eix= cos(x)+ i sin(x)

Proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)= 1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] �

On lots of T-shirts. In particular, with x = �, we get e�i=¡1 or ei� + 1 = 0 (which connects the five
fundamental constants).

Example 153. Where do trig identities like sin(2x)=2cos(x)sin(x) or sin2(x)= 1¡ cos(2x)
2

(and
infinitely many others you have never heard of!) come from?

Short answer: they all come from the simple exponential law ex+y= exey.
Let us illustrate this in the simple case (ex)2= e2x. Observe that

e2ix = cos(2x)+ i sin(2x)
eixeix = [cos(x)+ i sin(x)]2= cos2(x)¡ sin2(x)+ 2i cos(x)sin(x):

Comparing imaginary parts (the �stuff with an i�), we conclude that sin(2x)= 2cos(x)sin(x).
Likewise, comparing real parts, we read off cos(2x)= cos2(x)¡ sin2(x).

(Use cos2(x)+ sin2(x)= 1 to derive sin2(x)= 1¡ cos(2x)
2

from the last equation.)

Challenge. Can you find a triple-angle trig identity for cos(3x) and sin(3x) using (ex)3= e3x?

Or, use ei(x+y)= eixeiy to derive cos(x+ y)= cos(x)cos(y)¡ sin(x)sin(y) and sin(x+ y)= ::: (that's what
we actually did in class).

Realize that the complex number ei�=cos(�)+ i sin(�) corresponds to the point (cos(�); sin(�)).
These are precisely the points on the unit circle!

Recall that a point (x; y) can be represented using polar coordinates (r; �), where r is the
distance to the origin and � is the angle with the x-axis.

Then, x= r cos� and y= r sin�.

Every complex number z can be written in polar form as z= rei�, with r= jz j.

Why? By comparing with the usual polar coordinates (x= r cos� and y= r sin�), we can write

z=x+ iy= r cos�+ ir sin�= rei�:

In the final step, we used Euler's identity.
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Notes for Lecture 30 Mon, 4/14/2025

Boundary value problems

Example 154. The IVP (initial value problem) y 00+4y=0, y(0)=0, y 0(0)=0 has the unique
solution y(x)= 0.

Initial value problems are often used when the problem depends on time. Then, y(0) and y 0(0)
describe the initial configuration at t=0.
For problems which instead depend on spatial variables, such as position, it may be natural to
specify values at positions on the boundary (for instance, if y(x) describes the steady-state
temperature of a rod at position x, we might know the temperature at the two end points).
The next example illustrates that such a boundary value problem (BVP) may or may not have a
unique solution.

Example 155. Verify the following claims.

(a) The BVP y 00+4y=0, y(0)= 0, y(1)= 0 has the unique solution y(x)= 0.

(b) The BVP y 00+�2y=0, y(0)=0, y(1)=0 is solved by y(x)=B sin(�x) for any value B.

Solution.

(a) We know that the general solution to the DE is y(x)=A cos(2x)+B sin(2x). The boundary conditions

imply y(0)=A=
!
0 and, using that A=0, y(1)=B sin(2)=

!
0 shows that B=0 as well.

(b) This time, the general solution to the DE is y(x) = A cos(�x) + B sin(�x). The boundary conditions

imply y(0)=A=
!
0 and, using that A=0, y(1)=B sin(�)=

!
0. This second condition is true for every B.

It is therefore natural to ask: for which � does the BVP y 00+ �y = 0, y(0) = 0, y(L) = 0 have
nonzero solutions? (We assume that L> 0.)
Such solutions are called eigenfunctions and � is the corresponding eigenvalue.
Remark. Compare that to our previous use of the term eigenvalue: given a matrix A, we asked: for which � does
Av ¡ �v= 0 have nonzero solutions v? Such solutions were called eigenvectors and � was the corresponding
eigenvalue.

Example 156. Find all eigenfunctions and eigenvalues of y 00+�y=0, y(0)=0, y(L)= 0.
Such a problem is called an eigenvalue problem.

Solution. The solutions of the DE look different in the cases �<0, �=0, �>0, so we consider them individually.

�=0. Then y(x)=Ax+B and y(0)= y(L)= 0 implies that y(x)= 0. No eigenfunction here.

�<0. The roots of the characteristic polynomial are � ¡�
p

. Writing � = ¡�
p

, the general solution

therefore is y(x) = Ae�x + Be¡�x. y(0) = A + B =
!
0 implies B = ¡A. Using that, we get

y(L)=A(e�L¡ e¡�L)=
!
0. For eigenfunctions we need A=/ 0, so e�L= e¡�L which implies �L=¡�L.

This cannot happen since �=/ 0 and L=/ 0. Again, no eigenfunctions in this case.

�>0. The roots of the characteristic polynomial are �i �
p

. Writing � = �
p

, the general solution thus

is y(x) = A cos(�x) + B sin(�x). y(0) = A=
!
0. Using that, y(L) = B sin(�L) =

!
0. Since B =/ 0 for

eigenfunctions, we need sin(�L)=0. This happens if �L=n� for n=1; 2;3; ::: (since � and L are both
positive, n must be positive as well). Equivalently, � = n�

L
. Consequently, we find the eigenfunctions

yn(x)= sinn�x
L

, n=1; 2; 3; :::, with eigenvalue �=
¡n�
L

�
2.
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Example 157. Suppose that a rod of length L is compressed by a force P (with ends being pinned
[not clamped] down). We model the shape of the rod by a function y(x) on some interval [0; L].
The theory of elasticity predicts that, under certain simplifying assumptions, y should satisfy
EIy 00+Py=0, y(0)= 0, y(L)= 0.
Here, EI is a constant modeling the inflexibility of the rod (E, known as Young's modulus, depends on the
material, and I depends on the shape of cross-sections (it is the area moment of inertia)).

In other words, y 00+�y=0, y(0)= 0, y(L)= 0, with �= P

EI
.

The fact that there is no nonzero solution unless �=
¡ �n
L

�
2 for some n= 1; 2; 3; :::, means that buckling can

only occur if P =
¡ �n
L

�
2EI. In particular, no buckling occurs for forces less than �2EI

L2
. This is known as the

critical load (or Euler load) of the rod.
Comment. This is a very simplified model. In particular, it assumes that the deflections are small. (Technically,
the buckled rod in our model is longer than L; of course, that's not the case in practice.)
https://en.wikipedia.org/wiki/Euler%27s_critical_load

Example 158. Find all eigenfunctions and eigenvalues of

y 00+�y=0; y 0(0)= 0; y(3)= 0:

Solution. We distinguish three cases:

�<0. The characteristic roots are �r = � ¡�
p

and the general solution to the DE is y(x) = Aerx +

Be¡rx. Then y 0(0)=Ar¡Br=0 implies B=A, so that y(3)=A(e3r+ e¡3r). Since e3r+ e¡3r>0,
we see that y(3)=0 only if A=0. So there is no solution for �< 0.

�=0. The general solution to the DE is y(x)=A+Bx. Then y 0(0)=0 implies B=0, and it follows from
y(3)=A=0 that �=0 is not an eigenvalue.

�>0. The characteristic roots are �i �
p

. So, with r = �
p

, the general solution is y(x) = A cos(rx) +
B sin(rx). y 0(0) =Br=0 implies B=0. Then y(3)=A cos(3r) = 0. Note that cos(3r) = 0 is true if
and only if 3r = �

2
+ n� =

(2n+1)�

2
for some integer n. Since r > 0, we have n>0. Correspondingly,

�= r2=
�
(2n+1)�

6

�
2
and y(x)= cos

�
(2n+1)�

6
x
�
.

In summary, we have that the eigenvalues are � =
�
(2n+1)�

6

�
2
, with n = 0; 1; 2; ::: with corresponding

eigenfunctions y(x)= cos
�
(2n+1)�

6
x
�
.

Example 159. Suppose L> 0. Find all eigenfunctions and eigenvalues of

y 00+�y=0; y 0(0)= 0; y 0(L)= 0:

Solution. To solve this eigenvalue problem, we distinguish three cases:

�<0. Then, the roots are the real numbers �r = � ¡�
p

and the general solution to the DE is y(x) =
Aerx+Be¡rx. Then y0(0)=Ar¡Br=0 implies B=A, so that y 0(L)=A(LeLr¡Le¡Lr). Since
LeLr¡Le¡Lr=0 only if r=0, we see that y 0(L)=0 only if A=0. So there is no solution for �< 0.

�=0. Now, the general solution to the DE is y(x)=A+Bx. Then y 0(x)=B and we see that y 0(0)=0
and y 0(L)=0 if and only if B=0. So �=0 is an eigenvalue with corresponding eigenfunction y(x)=1.

�>0. Now, the roots are �i �
p

and y(x) = A cos( �
p

x) + B sin( �
p

x). Hence, y 0(x) =
¡A �
p

sin( �
p

x)+B �
p

cos( �
p

x). y 0(0)=B �
p

=0 impliesB=0. Then, y 0(L)=¡A �
p

sin(L �
p

)=

0 if and only if sin(L �
p

) = 0. The latter is true if and only if L �
p

= n� for some integer n.
In that case, �=

¡n�
L

�
2 and y(x)= cos

¡n�
L
x
�
.

In summary, we have that the eigenvalues are �=
¡ �n
L

�
2, n=0;1;2;3:::, (why did we include n=0 but excluded

n=¡1;¡2; :::?!) with corresponding eigenfunctions y(x)= cos
¡ �n
L
x
�
.
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Notes for Lecture 31 Wed, 4/16/2025

Partial differential equations

The heat equation

We wish to describe one-dimensional heat flow.
Comment. If this sounds very specialized, it might help to know that the heat equation is also used, for instance,
in probability (Brownian motion), financial math (Black-Scholes), or chemical processes (diffusion equation).

Let u(x; t) describe the temperature at time t at position x.
If we model a heated rod of length L, then x2 [0; L].
Notation. u(x; t) depends on two variables. When taking derivatives, we will use the notations ut=

@

@t
u and

uxx=
@2

@x2
u for first and higher derivatives.

Experience tells us that heat flows from warmer to cooler areas and has an averaging effect.
Make a sketch of some temperature profile u(x; t) for fixed t.

As t increases, we expect maxima (where uxx < 0) of that profile to flatten out (which means
that ut<0); similarly, minima (where uxx>0) should go up (meaning that ut>0). The simplest
relationship between ut and uxx which conforms with our expectation is ut= kuxx, with k > 0.

(heat equation)

ut= kuxx

Note that the heat equation is a linear and homogeneous partial differential equation.
In particular, the principle of superposition holds: if u1 and u2 solve the heat equation, then so does c1u1+ c2u2.

Higher dimensions. In higher dimensions, the heat equation takes the form ut = k(uxx + uyy) or ut =

k(uxx+uyy+uzz). The heat equation is often written as ut=k�u, where �=
@2

@x2
+

@2

@y2
+

@2

@z2
is the Laplace

operator you may know from Calculus III.
The Laplacian �u is also often written as �u=r2u. The operator r= (@/@x; @/@y) is pronounced �nabla�
(Greek for a certain harp) or �del� (Persian for heart), and r2 is short for the inner product r �r.

Let us think about what is needed to describe a unique solution of the heat equation.

� Initial condition at t=0: u(x; 0)= f(x) (IC)
This specifies an initial temperature distribution at time t=0.

� Boundary condition at x=0 and x=L: (BC)
Assuming that heat only enters/exits at the boundary (think of our rod as being insulated, except
possibly at the two ends), we need some condition on the temperature at the ends. For instance:

� u(0; t)=A, u(L; t)=B

This models a rod where one end is kept at temperature A and the other end at temperature B.

� ux(0; t)=ux(L; t)=0
This models a rod whose ends are insulated as well.

Under such assumptions, our physical intuition suggests that there should be a unique solution.
Important comment. We can always transform the case u(0; t)=A, u(L; t)=B into u(0; t)=u(L; t)= 0 by
using the fact that u(t; x)= ax+ b solves ut= kuxx. Can you spell this out?
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Example 160. To get a feeling, let us find some solutions to ut= kuxx.
� u(x; t)= ax+ b is a solution.

� For instance, u(x; t)= ektex is a solution.
[Not a very interesting one for modeling heat flow because it increases exponentially in time.]

� More interesting are u(x; t)= e¡ktcos(x) and u(x; t)= e¡ktsin(x).

� More generally, e¡k�
2tcos(�x) and e¡k�

2tsin(�x) are solutions.

� Can you find further solutions?

Important observation. This reveals a strategy for solving the heat equation together with the
following boundary and initial conditions:

ut= kuxx (PDE)
u(0; t)=u(L; t)= 0 (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

Note that e¡k�
2tsin(�x) solves the PDE and also satisfies (BC) if �= n

�

L
for some integer n.

Hence,

un(x; t)= e
¡k
¡�n
L

�2tsin��n
L
x
�

satisfies the PDE as well as (BC) for any integer n.

It remains to satisfy (IC) and we plan to do so by taking the right combination of the un(x; t).
At t= 0, we get un(x; 0) = sin

¡ �n
L
x
�
and all of these are 2L-periodic and odd. This matches

exactly the terms we get when we write f(x) as a Fourier sine series (f(x) is only given on (0;
L) and we extend it to an odd 2L-periodic function):

f(x)=
X
n>1

bnsin
�
�n
L
x
�

Consequently, (PDE)+(BC)+(IC) is solved by

u(x; t)=
X
n=1

1

bnun(x; t)=
X
n=1

1

bn e
¡
¡�n
L

�2ktsin��n
L
x
�
:

Comment. Note that the coefficients bn can be computed as

bn=
1
L

Z
¡L

L

f(x)sin
�
n�x
L

�
dx=

2
L

Z
0

L

f(x)sin
�
n�x
L

�
dx;

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x) on its
original interval of definition.
Comment. Note that n= 0 just gives the zero function u0(x; t) = 0, and negative values don't give anything
new because u¡n(x; t)=¡un(x; t).
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Example 161. Find the unique solution u(x; t) to:
ut=uxx (PDE)
u(0; t)=u(�; t)= 0 (BC)
u(x; 0)= sin(2x)¡ 7sin(3x); x2 (0; �) (IC)

Solution. This is the case k=1, L=� of the above. Hence, as we just observed, the functions

un(x; t)= e¡n
2tsin(nx)

satisfy (PDE) and (BC) for any integer n.
Since un(x; 0)= sin(nx), we have

u2(x; 0)¡ 7u3(x; 0)= sin(2x)¡ 7sin(3x)

as needed for (IC).
Therefore, (PDE)+(BC)+(IC) is solved by

u(x; t)=u2(x; t)¡ 7u3(x; t)= e¡4tsin(2x)¡ 7e¡9tsin(3x):

Example 162. Find the unique solution u(x;t) to:
ut=3uxx (PDE)
u(0; t)=u(4; t)= 0 (BC)
u(x; 0)=5sin(�x)¡ sin(3�x); x2 (0; 4) (IC)

Solution. This is the case k=3, L=4 of the above. Hence, the functions

un(x; t)= e
¡3
¡ �n
4

�2tsin��n
4
x
�

satisfy (PDE) and (BC) for any integer n. Since un(x; 0)= sin
¡ �n
4
x
�
, we have

5u4(x; 0)¡u12(x; 0)= 5sin(�x)¡ sin(3�x);

which is what we need for the right-hand side of (IC). Therefore, (PDE)+(BC)+(IC) is solved by

u(x; t)= 5u4(x; t)¡u12(x; t)= 5e¡3�
2tsin(�x)¡ e¡27�2tsin(3�x):
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Notes for Lecture 32 Fri, 4/18/2025

In the following example, we show how to find the special functions un(x; t) using a technique
called separation of variables that can be used to solve other simple partial differential equations
as well.

Example 163. Find the unique solution u(x; t) to:
ut= kuxx (PDE)
u(0; t)=u(L; t)= 0 (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

Solution.

� We will first look for simple solutions of (PDE)+(BC) (and then we plan to take a combination of such
solutions that satisfies (IC) as well). Namely, we look for solutions u(x; t) =X(x)T (t). This approach
is called separation of variables and it is crucial for solving other PDEs as well.

� Plugging into (PDE), we get X(x)T 0(t)= kX 00(x)T (t), and so X 00(x)

X(x)
=

T 0(t)

kT (t)
.

Note that the two sides cannot depend on x (because the right-hand side doesn't) and they cannot depend
on t (because the left-hand side doesn't). Hence, they have to be constant. Let's call this constant ¡�.
Then, X

00(x)

X(x)
=

T 0(t)

kT (t)
= const=:¡�.

We thus have X 00+�X =0 and T 0+�kT =0.

� Consider (BC). Note that u(0; t)=X(0)T (t)= 0 implies X(0)= 0.
[Because otherwise T (t)= 0 for all t, which would mean that u(x; t) is the dull zero solution.]
Likewise, u(L; t)=X(L)T (t)= 0 implies X(L)= 0.

� SoX solvesX 00+�X=0,X(0)=0,X(L)=0. We know that, up to multiples, the only nonzero solutions
are the eigenfunctions X(x)= sin

¡ �n
L
x
�
corresponding to the eigenvalues �=

¡ �n
L

�
2, n=1; 2; 3:::.

� On the other hand, T solves T 0+�kT =0, and hence T (t)= e¡�kt= e
¡
¡ �n
L

�2kt.
� Taken together, we have the solutions un(x; t)= e

¡
¡ �n
L

�2ktsin¡ �n
L
x
�
solving (PDE)+(BC).

� We wish to combine these in such a way that (IC) holds as well.
At t=0, un(x; 0)= sin

¡ �n
L
x
�
. All of these are 2L-periodic.

Hence, we extend f(x), which is only given on (0; L), to an odd 2L-periodic function (its Fourier sine
series!). By making it odd, its Fourier series will only involve sine terms: f(x) =

P
n=1
1 bn sin

¡ �n
L
x
�
.

Note that

bn=
1
L

Z
¡L

L

f(x)sin
�
n�x
L

�
dx=

2
L

Z
0

L

f(x)sin
�
n�x
L

�
dx;

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x)
on its original interval of definition.

Consequently, (PDE)+(BC)+(IC) is solved by

u(x; t)=
X
n=1

1
bnun(x; t)=

X
n=1

1
bn e

¡
¡ �n
L

�2ktsin��n
L
x
�
;

where bn=
2
L

Z
0

L

f(x)sin
�
n�x
L

�
dx.
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Example 164. Find the unique solution u(x; t) to:
ut=uxx
u(0; t)=u(1; t)= 0
u(x; 0)= 1; x2 (0; 1)

Solution. This is the case k=1, L=1 and f(x)= 1, x2 (0; 1), of Example 163.
In the final step, we extend f(x) to the 2-periodic odd function of Example 136. In particular, earlier, we have
already computed that the Fourier series is

f(x)=
X
n=1
n odd

1
4
�n

sin(n�x):

Hence, u(x; t)=
X
n=1
n odd

1
4
�n

e¡�
2n2tsin(n�x).

Comment. Note that, for t>0, the exponential very quickly approaches 0 (because of the¡n2 in the exponent),
so that we get very accurate approximations with only a handful terms.

We can use Sage to plot our solution using the terms n=1; 3; 5; :::; 19 of the infinite sum:

>>> var('x,t');

>>> uxt = sum(4/(pi*n) * exp(-pi^2*n^2*t) * sin(pi*n*x) for n in range(1,20,2))

>>> density_plot(uxt, (x,0,1), (t,0,0.4), plot_points=200, cmap='hot')

The resulting plot should look similar to the following:

0.0 0.2 0.4 0.6 0.8 1.0
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0.20
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0.4

0.6

0.8

1.0

Can you make sense of the plot? Does that plot confirm our expectations?
[Note that the horizontal axis shows x for x 2 (0; 1), while the vertical axis shows t for t 2 (0; 0.4). Yellow
represents 1 (for t=0, all values are 1 because of the initial condition), while black represents 0.]
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The boundary conditions in the next example model insulated ends.
Observe how we can proceed exactly as in Example 163. The main difference is that we need to find new functions
un(x; t) that solve the (same) PDE as well as the (different) boundary conditions.

Example 165. Find the unique solution u(x; t) to:
ut= kuxx (PDE)
ux(0; t)=ux(L; t)= 0 (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

Solution.

� We proceed as before and look for solutions u(x; t)=X(x)T (t) (separation of variables).

Plugging into (PDE), we get X(x)T 0(t)= kX 00(x)T (t), and so X 00(x)

X(x)
=

T 0(t)

kT (t)
= const=:¡�.

We thus have X 00+�X =0 and T 0+�kT =0.

� From the (BC), i.e. ux(0; t)=X 0(0)T (t)= 0, we get X 0(0)= 0.
Likewise, ux(L; t)=X 0(L)T (t)= 0 implies X 0(L)= 0.

� So X solves X 00+�X=0, X 0(0)=0, X 0(L)=0. It is shown in Example 159 that, up to multiples, the
only nonzero solutions of this eigenvalue problem are X(x) = cos

¡ �n
L
x
�
corresponding to � =

¡ �n
L

�
2,

n=0; 1; 2; 3:::.

� On the other hand (as before), T solves T 0+�kT =0, and hence T (t)= e¡�kt= e
¡
¡ �n
L

�2kt.
� Taken together, we have the solutions un(x; t)= e

¡
¡ �n
L

�2ktcos¡ �n
L
x
�
solving (PDE)+(BC).

� We wish to combine these in such a way that (IC) holds as well.
At t=0, un(x; 0)= cos

¡ �n
L
x
�
. All of these are 2L-periodic.

Hence, we extend f(x), which is only given on (0; L), to an even 2L-periodic function (its Fourier cosine
series!). By making it even, its Fourier series only involves cosine terms: f(x)= a0

2
+
P

n=0
1 ancos

¡ �n
L
x
�
.

Note that

an=
1
L

Z
¡L

L

f(x)cos
�
n�x
L

�
dx=

2
L

Z
0

L

f(x)cos
�
n�x
L

�
dx;

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x)
on its original interval of definition.

Consequently, (PDE)+(BC)+(IC) is solved by

u(x; t)=
a0
2
u0(x; t)+

X
n=1

1
anun(x; t)=

a0
2
+
X
n=1

1
an e

¡
¡ �n
L

�2ktcos��n
L
x
�
;

where an=
2
L

Z
0

L

f(x)cos
�
n�x
L

�
dx.

Example 166. Find the unique solution u(x;t) to:
ut=3uxx (PDE)
ux(0; t)=ux(4; t)= 0 (BC)
u(x; 0)=2+5cos(�x)¡ cos(3�x); x2 (0; 4) (IC)

Solution. This is the case k=3, L=4 that we solved in Example 165 where we found that the functions

un(x; t)= e
¡
¡ �n
L

�2ktcos��n
L
x
�
= e

¡3
¡ �n
4

�2tcos��n
4
x
�

solve (PDE)+(BC). Since un(x; 0)= cos
¡ �n
4
x
�
, we have

2u0(x; 0)+ 5u4(x; 0)¡u12(x; 0)= 2+5cos(�x)¡ cos(3�x);

which is what we need for the right-hand side of (IC). Therefore, (PDE)+(BC)+(IC) is solved by

u(x; t)= 2u0(x; t)+ 5u4(x; t)¡u12(x; t)= 2+5e¡3�
2tcos(�x)¡ e¡27�2tcos(3�x):
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Notes for Lecture 33 Mon, 4/21/2025

The inhomogeneous heat equation

We next indicate that we can similarly solve the inhomogeneous heat equation (with inhomoge-
neous boundary conditions).

Comment. We indicated earlier that

ut= kuxx (PDE)
u(0; t)= a; u(L; t)= b (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

can be solved by realizing that Ax+B solves (PDE).

Indeed, let v(x) = a +
b¡ a

L
x (so that v(0) = a and v(L) = b). We then look for a solution of the form

u(x; t)= v(x)+w(x; t). Note that u(x; t) solves (PDE)+(BC)+(IC) if and only if w(x; t) solves:

wt= kwxx (PDE)
w(0; t)= 0; w(L; t)= 0 (BC*)
w(x; 0)= f(x)¡ v(x); x2 (0; L) (IC)

This is the (homogeneous) heat equation that we know how to solve.
v(x) is called the steady-state solution (it does not depend on time!) and w(x; t) the transient solution (note
that w(x; t) and its partial derivatives tend to zero as t!1 because of the boundary conditions (BC*)).

Example 167. Consider the heat flow problem:
ut=3uxx+4x2 (PDE)
u(0; t)= 1; ux(3; t)=¡5 (BC)
u(x; 0)= f(x); x2 (0; 3) (IC)

Determine the steady-state solution and spell out equations characterizing the transient solution.
Solution. We look for a solution of the form u(x; t) = v(x) +w(x; t), where v(x) is the steady-state solution
and where w(x; t) is the transient solution which (together with its derivatives) tends to zero as t!1.

� Plugging into (PDE), we get wt=3v 00+3wxx+4x2. Letting t!1, this becomes 0=3v 00+4x2.
Note that this also implies that wt=3wxx.

� Plugging into (BC), we get v(0)+w(0; t)= 1 and v 0(3)+wx(3; t)=¡5.
Letting t!1, these become v(0)=1 and v 0(3)=¡5.

� Solving the ODE 0=3v 00+4x2, we find

v(x)=

ZZ
¡4
3
x2dxdx=

Z �
¡4
9
x3+C

�
dx=¡1

9
x4+Cx+D:

The boundary conditions v(0)= 1 and v 0(3)=¡5 imply D=1 and ¡4

9
� 33+C =¡5 (so that C =7).

In conclusion, the steady-state solution is v(x)=¡1

9
x4+1+7x.

On the other hand, the transient solution w(x; t) is characterized as the unique solution to:

wt=3wxx (PDE*)
w(0; t)= 0; wx(3; t)= 0 (BC*)
w(x; 0)= f(x)¡ v(x) (IC*)

This homogeneous heat flow problem can now be solved using separation of variables.
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Example 168. For t>0 and x2 [0;4], consider the heat flow problem:

ut = 2uxx+ e¡x/2

ux(0; t) = 3
u(4; t) = ¡2
u(x; 0) = f(x)

Determine the steady-state solution and spell out equations characterizing the transient solution.
Solution. We look for a solution of the form u(x; t) = v(x) +w(x; t), where v(x) is the steady-state solution
and where the transient solution w(x; t) tends to zero as t!1 (as do its derivatives).

� Plugging into (PDE), we get wt=2v 00+2wxx+ e¡x/2. Letting t!1, this becomes 0=2v 00+ e¡x/2.

� Plugging into (BC), we get wx(0; t)+ v 0(0)= 3 and w(4; t)+ v(4)=¡2.
Letting t!1, these become v 0(0)=3 and v(4)=¡2.

� Solving the ODE 0=2v 00+ e¡x/2, we find

v(x)=

ZZ
¡1
2
e¡x/2dxdx=

Z
(e¡x/2+C)dx=¡2e¡x/2+Cx+D:

The boundary conditions v 0(0)= 3 and v(4)=¡2 imply C =2 and ¡2e¡2+8+D=¡2.
In conclusion, the steady-state solution is v(x)=¡2e¡x/2+2x¡ 10+2e¡2.

On the other hand, the transient solution w(x; t) is characterized as the unique solution to:

wt=2wxx
wx(0; t)= 0; w(4; t)= 0
w(x; 0)= f(x)¡ v(x)

Note. We know how to solve this homogeneous heat equation using separation of variables.
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Steady-state temperature: The Laplace equation

(2D and 3D heat equation) In higher dimensions, the heat equation takes the form ut =
k(uxx+uyy) or ut= k(uxx+uyy+uzz).

The heat equation is often written as ut= k�u where �=
@2

@x2
+

@2

@y2
(2D) or �=

@2

@x2
+

@2

@y2
+

@2

@z2
(3D) is the

Laplace operator you may know from Calculus III.
Other notations. �u= divgradu=r �ru=r2u

If temperature is steady, then ut= 0. Hence, the steady-state temperature u(x; y) must satisfy
the PDE uxx+uyy=0.

(Laplace equation, 2D)

uxx+uyy=0

Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions.
It is also known as the �potential equation�; satisfied by electric/gravitational potential functions. (More generally,
such potentials, if not in the vacuum, satisfy the Poisson equation uxx+ uyy = f(x; y), the inhomogeneous
version of the Laplace equation.)
Recall from Calculus III (if you have taken that class) that the gradient of a scalar function f(x; y) is the vector

field F = grad f =rf =
�
fx(x; y)
fy(x; y)

�
. One says that F is a gradient field and f is a potential function for F

(for instance, F could be a gravitational field with gravitational potential f).

The divergence of a vector field G=
�
g(x; y)
h(x; y)

�
is divG= gx+hy. One also writes divG=r �G.

The gradient field of a scalar function f is divergence-free if and only if f satisfies the Laplace equation �f =0.

One way to describe a unique solution to the Laplace equation within a region is by specifying the
values of u(x; y) along the boundary of that region.

This is particularly natural for steady-state temperatures profiles of a region R. The Laplace equation governs
how temperature behaves inside the region but we need to also prescribe the temperature on the boundary.

The PDE with such a boundary condition is called a Dirichlet problem:

(Dirichlet problem)
uxx+uyy=0 within region R

u(x; y)= f(x; y) on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region R, and prescribed values
on the boundary of that region (�Dirichlet boundary conditions�).
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Notes for Lecture 34 Wed, 4/23/2025

Finite difference method: A glance at discretizing PDEs

We know from Calculus that f 0(x)= lim
h!0

f(x+h)¡ f(x)
h

.

PDEs quickly become impossibly difficult to approach with exact solution techniques.

It is common therefore to proceed numerically. One approach is to discretize the problem.

For instance. We could use f 0(x)� 1

h
[f(x+h)¡ f(x)] to replace f 0(x) with the finite difference on the RHS.

Such approximate methods are called finite difference methods.
Finite difference methods are a common approach to numerically solving PDEs.
The ODE or PDE translates into a (sparse) system of linear equations which is then solved using Linear Algebra.

Example 169.

� f 0(x)� 1

h
[f(x+h)¡ f(x)] is a forward difference for f 0(x).

� f 0(x)� 1

h
[f(x)¡ f(x¡h)] is a backward difference for f 0(x).

� f 0(x)� 1

2h
[f(x+h)¡ f(x¡h)] is a central difference for f 0(x).

Note that this is the average of the forward and the backward difference. The calculations below show
that the central difference performs better as an approximation of f 0(x).

Comment. Recall that power series f(x) have the Taylor expansion f(x)=
X
n=0

1
f (n)(x0)

n!
(x¡x0)n.

Equivalently, f(x+h)=
X
n=0

1
f (n)(x)
n!

hn= f(x)+hf 0(x)+
h2

2
f 00(x)+

h3

6
f 000(x)+O(h4). It follows that

1
h
[f(x+h)¡ f(x)] = f 0(x)+ h

2
f 00(x)+O(h2) = f 0(x)+ O(h) :

The error is of order O(h). On the other hand, combining

f(x+h) = f(x)+hf 0(x)+
h2

2
f 00(x)+

h3

6
f 000(x)+O(h4);

f(x¡h) = f(x)¡hf 0(x)+ h2

2
f 00(x)¡ h3

6
f 000(x)+O(h4);

it follows that
1
2h
[f(x+h)¡ f(x¡h)]= f 0(x)+ h2

6
f 000(x)+O(h3) = f 0(x)+ O(h2) :

The error is of order O(h2).

Comment. An error of order h2 means that if we cut h by a factor of, say, 1

10
, then we expect the error to be

cut by a factor of 1

102
=

1

100
.
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Example 170. Find a central difference for f 00(x).
Solution. Adding the two expansions for f(x+h) and f(x¡h) to kill the f 0(x) terms, and subtracting 2f(x),
we find that

1

h2
[f(x+h)¡ 2f(x)+ f(x¡h)] = f 00(x)+ h2

12
f (4)(x)+O(h3) = f 00(x)+ O(h2) :

The error is of order 2.

Alternatively. If we iterate the approximation f 0(x)� 1

2h
[f(x+ h)¡ f(x¡ h)] (in the second step, we apply

it with x replaced by x�h), we obtain

f 00(x)� 1
2h
[f 0(x+h)¡ f 0(x¡h)]� 1

4h2
[f(x+2h)¡ 2f(x)+ f(x¡ 2h)];

which is the same as what we found above, just with h replaced by 2h.

Example 171. (discretizing �) Use the above central difference approximation for second
derivatives to derive a finite difference for �u=uxx+uyy in 2D.

Solution.

uxx + uyy � 1

h2
[u(x+h; y)¡ 2u(x; y)+u(x¡h; y)] + 1

h2
[u(x; y+h)¡ 2u(x; y)+u(x; y¡h)]

=
1

h2
[u(x+h; y)+u(x¡h; y)+u(x; y+h)+u(x; y¡h)¡ 4u(x; y)]

Notation. This finite difference is often represented as 1

h2

24 1
1 ¡4 1

1

35, the five-point stencil.
Comment. Recall that solutions to �u=0 are supposed to describe steady-state temperature distributions. We
can see from our discretization that this is reasonable. Namely, �u=0 becomes approximately equivalent to

u(x; y)=
1
4
(u(x+h; y)+u(x¡h; y)+u(x; y+h)+u(x; y¡h)):

In other words, the temperature u(x; y) at a point (x; y) should be the average of the temperatures of its four
�neighbors� u(x+h; y) (right), u(x¡h; y) (left), u(x; y+h) (top), u(x; y¡h) (bottom).
Comment. Think about how to use this finite difference to numerically solve the corresponding Dirichlet problem
by discretizing (one equation per lattice point).
Advanced comment. If �u = 0 then, when discretizing, the center point has the average value of the four
points adjacent to it. This leads to the maximum principle: if �u=0 on a region R, then the maximum (and,
likewise, minimum) value of u must occur at a boundary point of R.
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Example 172. Discretize the following Dirichlet problem:
uxx+uyy = 0 (PDE)
u(x; 0) = 2
u(x; 2) = 3
u(0; y) = 0
u(1; y) = 0

(BC)

Use a step size of h= 1

3
.

Comment. Note that, for the Dirichlet problem as well as for our discretization, it doesn't matter that the
boundary conditions aren't well-defined at the corners.

Solution. Note that our rectangle has side lengths 1 (in x direction) and 2 (in y direction). With a step size of
h=

1

3
we therefore get 4 � 7 lattice points, namely the points

um;n=u(mh;nh); m2f0; 1; 2; 3g; n2f0; 1; :::; 6g:

Further note that the boundary conditions determine the values of um;n if m=0 or m=3 as well as if n=0
or n=6. This leaves 2 � 5= 10 points at which we need to determine the value of um;n.

Next, we approximate uxx+uyy by 1

h2
[u(x+h; y)+u(x¡h; y)+u(x; y+h)+u(x; y¡h)¡ 4u(x; y)] (see

previous example for how we obtained this finite difference approximation). Note that, if u(x; y)=um;n is one
of our lattice points, then the other four terms in the finite difference are lattice points as well; for instance,
u(x+h; y)=um+1;n. The equation uxx+uyy=0 therefore translates into

um+1;n+um¡1;n+um;n+1+um;n¡1¡ 4um;n=0:

Spelling out these equation for each m 2 f1; 2g and n 2 f1; 2; :::; 5g, we get 10 (linear) equations for our 10
unknown values. For instance, here are the equations for (m;n)= (1; 1), (1; 2) as well as (2; 5):

u2;1+u0;1

=0

+u1;2+u1;0

=2

¡ 4u1;1 = 0

u2;2+u0;2

=0

+u1;3+u1;1¡ 4u1;2 = 0

���
u3;5

=0

+u1;5+u2;6

=3

+u2;4¡ 4u2;5 = 0

In matrix-vector form, these linear equations take the form:

266664
¡4 1 0 0 0 1 0 0 0 0
1 ¡4 1 0 0 0 1 0 0 0

���
0 0 0 0 1 0 0 0 1 ¡4

377775

26666666666666666666666666666664

u1;1
u1;2
u1;3
u1;4
u1;5
u2;1
u2;2
u2;3
u2;4
u2;5

37777777777777777777777777777775
=

266664
¡2
0
���
¡3

377775

Solving this system, we find u1;1� 0.7847, u1;2� 0.3542, :::, u2;5� 1.1597.

For comparison, the corresponding exact values are u
�
1

3
;
1

3

�
�0.7872, u

�
1

3
;
2

3

�
�0.3209, :::, u

�
2

3
;
5

3

�
�1.1679.

These were computed from the exact formula

u(x; y)=
X
n=1
n odd

1
4
�n

sin(�nx)
1¡ e4�n [2(e

�ny¡ e¡�n(y¡4))+ 3(e�n(2¡y)¡ e�n(2+y))];

which we will derive soon.
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The three plots below visualize the discretized solution with h= 1

3
from Example 172, the exact

solution, as well as the discretized solution with h= 1

20 .
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Comment. The first plot looks a bit overly rough because we chose not to interpolate the values. As we showed
above, the approximate values at the ten lattice points are actually pretty decent for such a large step size.
Warning. The resulting linear systems quickly become very large. For instance, if we use a step size of h= 1

100
,

then we need to determine roughly 100 � 200= 20,000 (99 � 199 to be exact) values um;n. The corresponding
matrixM will have about 20,0002=400,000,000 entries, which is already challenging for a weak machine if we
use generic linear algebra software. At this point it is important to realize that most entries of the matrixM are
0. Such matrices are called sparse and there are efficient algorithms for solving systems involving such matrices.

Example 173. Discretize the following Dirichlet problem:
uxx+uyy = 0 (PDE)
u(x; 0) = 2
u(x; 1) = 3
u(0; y) = 1
u(2; y) = 4

(BC)

Use a step size of h= 1

2
.

Solution. Note that our rectangle has side lengths 2 (in x direction) and 1 (in y direction). With a step size of
h=

1

2
we therefore get 5 � 3 lattice points, namely the points

um;n=u(mh; nh); m2f0; 1; 2; 3; 4g; n2f0; 1; 2g:

Further note that the boundary conditions determine the values of um;n if m=0 or m=4 as well as if n=0
or n=2. This leaves 3 � 1=3 points at which we need to determine the value of um;n.

If we approximate uxx+uyy by 1

h2
[u(x+h; y)+u(x¡h; y)+u(x; y+h)+u(x; y¡h)¡ 4u(x; y)] then, in

terms of our lattice points, the equation uxx+uyy=0 translates into

um+1;n+um¡1;n+um;n+1+um;n¡1¡ 4um;n=0:

Spelling out these equation for each m2f1; 2; 3g and n=1, we get 3 equations for our 3 unknown values:

u2;1+u0;1

=1

+u1;2

=3

+u1;0

=2

¡ 4u1;1 = 0

u3;1+u1;1+u2;2

=3

+u2;0

=2

¡ 4u2;1 = 0

u4;1

=4

+u2;1+u3;2

=3

+u3;0

=2

¡ 4u3;1 = 0

In matrix-vector form, these linear equations take the form:24 ¡4 1 0
1 ¡4 1
0 1 ¡4

35
2664 u1;1
u2;1
u3;1

3775 =

24 ¡6¡5
¡9

35
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Notes for Lecture 35 Fri, 4/25/2025

Example 174. Consider the polygonal region with vertices (0;0), (4;0), (4;2), (2;2), (2;3), (0;3).
We wish to find the steady-state temperature distribution u(x; y) within this region if the tem-
perature is A between (0; 0), (4; 0), and B elsewhere on the boundary.

Spell out the resulting equations when we discretize this problem using a step size of h=1.
Solution. As before, we write um;n=u(mh;nh). Make a sketch!

B
B u1;2 B B
B u1;1 u2;1 u3;1 B

A A A

If we approximate uxx+uyy by 1

h2
[u(x¡h; y)+u(x+h; y)+u(x; y¡h)+u(x; y+h)¡ 4u(x; y)] then, in

terms of our lattice points, the equation uxx+uyy=0 translates into

um¡1;n+um+1;n+um;n¡1+um;n+1¡ 4um;n=0:

Spelling out these equation in matrix-vector form, we obtain:266664
¡4 1 0 1
1 ¡4 1 0
0 1 ¡4 0
1 0 0 ¡4

377775
26666664
u1;1
u2;1
u3;1
u1;2

37777775 =

266664
¡A¡B
¡A¡B
¡A¡ 2B
¡3B

377775
Comment. Note that, because of the way we discretize, it matters that there is a well-defined temperature at
the boundary vertex (2; 2). For the other vertices, we don't need a well-defined temperature (and so it is not a
problem that it is unclear what the temperature should be at (0; 0) or (4; 0) where it jumps from A to B).

Solving the Laplace equation inside a rectangle

One complication in solving the 2D Laplace equation inside a region R with Dirichlet boundary
conditions is that the boundary of R is some curve (opposed to just two points in the 1D case).

A strategy to deal with complicated regions is to break them into simpler regions, such as rectangles or triangles.

Next, we demonstrate that we can fully solve the 2D Laplace equation in the case when R is a
rectangle. In that case, the Dirichlet problem takes the form:

uxx+uyy=0 (PDE)
u(x; 0) = f1(x)
u(x; b) = f2(x)
u(0; y) = f3(y)
u(a; y) = f4(y)

(BC)

The first crucial observation is that we can break this problem into four parts:

uxx+uyy=0
u(x; 0) = f1(x)
u(x; b) = 0
u(0; y) = 0
u(a; y) = 0

uxx+uyy=0
u(x; 0) = 0
u(x; b) = f2(x)
u(0; y) = 0
u(a; y) = 0

uxx+uyy=0
u(x; 0) = 0
u(x; b) = 0
u(0; y) = f3(y)
u(a; y) = 0

uxx+uyy=0
u(x; 0) = 0
u(x; b) = 0
u(0; y) = 0
u(a; y) = f4(y)

If we solve these four simpler Dirichlet problems, then the sum of the four solutions will solve the
original Dirichlet problem.
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As a consequence, it is no loss of generality to use homogeneous boundary conditions for three of
the four sides. We illustrate how to solve this case in the next example. Our main tool is separation
of variables, just as for the heat equation ut= kuxx.

Example 175. Find the unique solution u(x; y) to:
uxx+uyy=0 (PDE)
u(x; 0) = f(x)
u(x; b) = 0
u(0; y) = 0
u(a; y) = 0

(BC)

Solution.

� We proceed as before and look for solutions u(x; y)=X(x)Y (y) (separation of variables).

Plugging into (PDE), we get X 00(x)Y (y)+X(x)Y 00(y), and so X 00(x)

X(x)
=¡Y 00(y)

Y (y)
= const :=¡�.

We thus have X 00+�X =0 and Y 00¡�Y =0.

� From the last three (BC), we get X(0)= 0, X(a)= 0, Y (b)= 0.
We ignore the first (inhomogeneous) condition for now.

� So X solves X 00+�X =0, X(0)= 0, X(a)= 0.
From earlier, we know that, up to multiples, the only nonzero solutions of this eigenvalue problem are
X(x)= sin

¡ �n
a
x
�
corresponding to �=

¡ �n
a

�
2, n=1; 2; 3:::.

� On the other hand, Y solves Y 00¡�Y =0, and hence Y (y)=Ae �
p

y+Be¡ �
p

y.

The condition Y (b)= 0 implies that Ae �
p

b+Be¡ �
p

b=0 so that B=¡Ae2 �
p

b.

Hence, Y (y)=A
¡
e �
p

y¡ e �
p

(2b¡y)�.
� Taken together, we have the solutions un(x; y)= sin

¡ �n
a
x
��
e
�n

a
y¡ e

�n

a
(2b¡y)

�
solving (PDE)+(BC),

with the exception of u(x; 0)= f(x).

� We wish to combine these in such a way that u(x; 0)= f(x) holds as well.

At y=0, un(x; 0)= sin
¡ �n
a
x
�
(1¡ e2�nb/a). All of these are 2a-periodic.

Hence, we extend f(x), which is only given on (0; a), to an odd 2a-periodic function (its Fourier sine
series!). By making it odd, its Fourier series will only involve sine terms: f(x)=

P
n=1
1 bn sin

¡ �n
a
x
�
.

Note that

bn=
1
a

Z
¡a

a

f(x)sin
�
n�x
a

�
dx=

2
a

Z
0

a

f(x)sin
�
n�x
a

�
dx;

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x)
on its original interval of definition.

Consequently, (PDE)+(BC) is solved by

u(x; y)=
X
n=1

1
bn

1¡ e2�nb/a
un(x; y)=

X
n=1

1
bn

1¡ e2�nb/a
sin
�
�n
a
x
��
e
�n

a
y¡ e

�n

a
(2b¡y)

�
;

where

bn=
2
a

Z
0

a

f(x)sin
�
n�x
a

�
dx:
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Notes for Lecture 36 Mon, 4/28/2025

Example 176. Find the unique solution u(x; y) to:
uxx+uyy = 0 (PDE)
u(x; 0) = 1
u(x; 2) = 0
u(0; y) = 0
u(1; y) = 0

(BC)

Solution. This is the special case of the previous example with a= 1,
b=2 and f(x)= 1 for x2 (0; 1).
From Example 136, we know that f(x) has the Fourier sine series

f(x)=
X
n=1
n odd

1
4
�n

sin(n�x); x2 (0; 1):

Hence,

u(x; y)=
X
n=1
n odd

1
4
�n

1

1¡ e4�n sin(�nx)(e�ny¡ e�n(4¡y)):

Comment. The temperature at the center is u(1
2
;1)�0.0549 (only the

first term of the infinite sum suffices for this estimate; the first three
terms suffice for 9 digits of accuracy). 0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.0

0.2

0.4

0.6

0.8

1.0

Example 177. Find the unique solution u(x; y) to:
uxx+uyy=0 (PDE)
u(x; 0) = 0
u(x; 2) = 3
u(0; y) = 0
u(1; y) = 0

(BC)

Solution. Instead of starting from scratch (homework exercise!), let us reuse our computations:
Let v(x; y)=u(x; 2¡ y). Then vxx+ vyy=0, v(x; 0)= 3, v(x; 2)= 0, v(0; y)= 0, v(1; y)= 0.
Hence, it follows from the previous example that

v(x; y)= 3
X
n=1
n odd

1
4
�n

1

1¡ e4�n sin(�nx)(e�ny¡ e�n(4¡y)):

Consequently,

u(x; y)= v(x; 2¡ y)= 3
X
n=1
n odd

1
4
�n

1

1¡ e4�n sin(�nx)(e�n(2¡y)¡ e�n(2+y)):
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Example 178. Find the unique solution u(x; y) to:

uxx+uyy = 0
u(x; 0)=2; u(x; 2)=3
u(0; y)= 0; u(1; y)=0

Solution. Note that u(x; y) is a combination of the solutions to the
previous two examples!

u(x; y)=X
n=1
n odd

1
4
�n

sin(�nx)
1¡ e4�n [2(e

�ny¡ e¡�n(y¡4))+ 3(e�n(2¡y)¡ e�n(2+y))]:

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Example 179. Find the unique solution u(x; y) to:
uxx+uyy = 0 (PDE)
u(x; 0) = 4sin(�x)¡ 5sin(3�x)
u(x; 2) = 0
u(0; y) = 0
u(3; y) = 0

(BC)

Solution.

� We look for solutions u(x; y)=X(x)Y (y) (separation of variables).

Plugging into (PDE), we get X 00(x)Y (y)+X(x)Y 00(y), and so X 00(x)

X(x)
=¡Y 00(y)

Y (y)
= const.

We thus have X 00¡ constX =0 and Y 00+ constY =0.

� From the last three (BC), we get X(0)= 0, X(3)= 0, Y (2)= 0.

� So X solves X 00+�X =0 (we choose �=¡const), X(0)=0, X(3)=0.
From earlier (or do it!), we know that, up to multiples, the only nonzero solutions of this eigenvalue

problem are X(x)= sin
�
1

3
�nx

�
corresponding to �=

�
1

3
�n
�
2
, n=1; 2; 3:::.

� On the other hand, Y solves Y 00¡�Y =0, and hence Y (y)=Ae �
p

y+Be¡ �
p

y.

The condition Y (2)=0 implies that Ae2 �
p

+Be¡2 �
p

=0 so that B=¡Ae4 �
p

.

Hence, Y (y)=A
¡
e �
p

y¡ e �
p

(4¡y)�=A
�
e
1
3
�ny¡ e

1
3
�n(4¡y)

�
.

� Taken together, we have the solutions un(x; y) = sin
�
1

3
�nx

��
e
1
3
�ny ¡ e

1
3
�n(4¡y)

�
solving

(PDE)+(BC), with the exception of u(x; 0)= 4sin(�x)¡ 5sin(3�x).

� At y=0, un(x; 0)= sin
�
1

3
�nx

��
1¡ e

4
3
�n
�
.

In particular, u3(x; 0)= sin(�x)(1¡ e4�) and u9(x; 0)= sin(3�x)(1¡ e12�).

Hence, 4sin(�x)¡ 5sin(3�x)= 4

1¡ e4�
u3(x; 0)¡ 5

1¡ e12�
u9(x; 0). Therefore our overall solution is

u(x; y) =
4

1¡ e4�u3(x; y)¡
5

1¡ e12�u9(x; y)

=
4

1¡ e4� sin(�x)(e
�y¡ e�(4¡y))¡ 5

1¡ e12� sin(3�x)(e
3�y¡ e3�(4¡y)):

Comment. Of course, in general, our inhomogeneous (BC) will be a function f(x) that is not such an obvious
combination of our special solutions un(x;0). In that case, we need to compute an appropriate Fourier expansion
of f(x) first (here, the Fourier sine series of f(x)).
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