
Notes for Lecture 27 Wed, 4/2/2025

Review: the motion of a mass on a spring

The motion of a mass m attached to a spring is described by

my 00+ ky=0

where y is the displacement from the equilibrium position and k > 0 is the spring constant.
Why? This follows from Hooke's law F =¡ky combined with Newton's second law F =ma=my 00. (Note
that the minus sign is needed because the force on the mass is in direction opposite to the displacement.)
Comment. By measuring y as the displacement from equilibrium, it doesn't matter whether the mass is attached
horizontally or vertically (gravity is taken into account by the extra stretch in the spring due to the mass).

Solving this DE, we find that the general solution is

y(t)=A cos(!t)+B sin(!t)

where != k/m
p

(note that the characteristic roots are �i k

m

q
). We observe that:

� The motion y(t) is periodic with period 2�/!. Equivalently, its (circular) frequency is !.
This follows from the fact that both cos(t) and sin(t) have period 2�.

� The amplitude of the motion y(t) is A2+B2
p

.

This follows from the fact that y(t) =A cos(!t) +B sin(!t) = r cos(!t¡ �) (can you explain/prove
this?) where (r;�) are the polar coordinates for (A;B). In particular, the amplitude is r= A2+B2

p
.

More generally, the motion of a mass m on a spring, with damping and with an external force
f(t) taken into account, can be modeled by the DE

my 00+ dy 0+ ky= f(t):

Note that each term is representing a force: my 00=ma is the force due to Newton's second law (F =ma), the
term dy 0 models damping (proportional to the velocity), the term ky represents the force due to Hooke's law,
and the term f(t) represents an external force that acts on the mass at time t.

Fourier series and linear differential equations

In the following examples, we consider inhomogeneous linear DEs p(D)y=F (t) where F (t) is a
periodic function that can be expressed as a Fourier series. We first review the notion of resonance
(and how to predict it) and then solve such DEs.

Example 142. Consider the linear DE my 00+ ky = cos(!t). For which (external) frequencies
!> 0 does resonance occur?
Solution. The characteristic roots (the roots of p(D)=mD2+k) are�i k/m

p
. Correspondingly, the solutions

of the homogeneous equationmy 00+ky=0 are combinations of cos(!0t) and sin(!0t), where !0= k/m
p

(!0
is called the natural frequency of the DE). Resonance occurs in the case != !0 when the external frequency
matches the natural frequency.
Review. If !=/ !0 (overlapping roots), then there is particular solution of the form yp(t)=Acos(!t)+B sin(!t)
(for specific values of A and B). The general solution is y(t) = A cos(!t) + B sin(!t) + C1cos(!0t) +
C2sin(!0t), which is a bounded function of t. In contrast, if ! = !0, then the general solution is y(t) =
(C1+At)cos(!0t)+ (C2+Bt)sin(!0t) and this function is unbounded.
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Example 143. A mass-spring system is described by the DE 2y 00+ 32y=
X
n=1

1
cos(n!t)
n2+1

.

For which ! does resonance occur?
Solution. The roots of p(D) = 2D2 + 32 are �4i, so that that the natural frequency is 4. Resonance
therefore occurs if 4 equals n! for some n 2 f1; 2; 3; :::g. Equivalently, resonance occurs if != 4/n for some
n2f1; 2; 3; :::g.

Example 144. A mass-spring system is described by the DE my 00+ y=
X
n=1

1
1
n2

sin
�
nt
3

�
.

For which m does resonance occur?
Solution. The roots of p(D) =mD2 + 1 are �i/ m

p
, so that the natural frequency is 1/ m

p
. Resonance

therefore occurs if 1/ m
p

= n/3 for some n 2 f1; 2; 3; :::g. Equivalently, resonance occurs if m= 9/n2 for
some n2f1; 2; 3; :::g.

Example 145. A mass-spring system is described by the DE 3y 00+ ky=F (t) where F (t) is an
external force with period 5. For which values of k can resonance occur?

Solution. F (t) has a Fourier series of the form F (t)=
a0
2
+
X
n=1

1 �
ancos

�
2�nt
5

�
+ bnsin

�
2�nt
5

��
.

The roots of p(D)=3D2+k are �i k

3

q
, so that the natural frequency is k

3

q
. Resonance therefore can occur

if k

3

q
=
2�n

5
for some n2f1;2;3; :::g. Equivalently, resonance can occur if k= 12�2n2

25
for some n2f1;2;3; :::g.

Note. Resonance will occur for k= 12�2n2

25
unless both of the corresponding Fourier coefficients an and bn are 0.

Note. The term a0/2 in F (t) corresponds to a characteristic root of 0 and cannot lead to resonance.

Though it requires some effort, we already know how to solve p(D)y = F (t) for periodic forces
F (t), once we have a Fourier series for F (t).
The same approach works for linear differential equations of higher order, or even systems of equations.

Example 146. Find a particular solution of 2y 00 + 32y = F (t), with F (t) =
�

10 if t2 (0; 1)
¡10 if t2 (1; 2) ,

extended 2-periodically.
Solution.

� From earlier, we already know F (t)= 10
P

n odd
4

�n
sin(�nt).

� We next solve the equation 2y00 + 32y = sin(�nt) for n = 1; 3; 5; :::. First, we note that the external
frequency is �n, which is never equal to the natural frequency !0 = 4. Hence, there exists a particular
solution of the form yp(t)=A cos(�nt)+B sin(�nt). To determine the coefficients A;B, we plug into
the DE. Noting that yp

00=¡�2n2 yp (can you see why without computing two derivatives?), we get

2yp
00+ 32yp=(32¡ 2�2n2)(A cos(�nt)+B sin(�nt))=

!
sin(�nt):

We conclude A=0 and B=
1

32¡ 2�2n2 , so that yp(t)=
sin(�nt)
32¡ 2�2n2 .

� We combine the particular solutions found in the previous step, to see that

2y00+ 32y= 10
X
n=1
n odd

1
4
�n

sin(�nt) is solved by yp= 10
X
n=1
n odd

1
4
�n

sin(�nt)
32¡ 2�2n2 :
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Example 147. Find a particular solution of 2y 00+32y=F (t), with F (t) the 2�-periodic function
such that F (t)= 10t for t2 (¡�; �).
Solution.

� The Fourier series of F (t) is F (t)=
P

n=1
1 (¡1)n+1 20

n
sin(nt). [Exercise!]

� We next solve the equation 2y 00+32y= sin(nt) for n=1;2;3; :::. Note, however, that resonance occurs
for n = 4, so we need to treat that case separately. If n =/ 4 then we find, as in the previous example,
that yp(t)=

sin(nt)
32¡ 2n2 . [Note how this fails for n=4!]

For 2y 00+ 32y= sin(4t), we begin with yp=At cos(4t) +Bt sin(4t). Then yp
0 = (A+4Bt)cos(4t) +

(B ¡ 4At)sin(4t), and yp
00= (8B ¡ 16At)cos(4t) + (¡8A ¡ 16Bt)sin(4t). Plugging into the DE, we

get 2yp
00+32yp=16B cos(4t)¡16Asin(4t)=

!
sin(4t), and thusB=0, A=¡ 1

16
. So, yp=¡ 1

16
tcos(4t).

� We combine the particular solutions to get that our DE

2y 00+ 32y=¡5sin(4t)+
X
n=1
n=/ 4

1
(¡1)n+1 20

n
sin(nt)

is solved by

yp(t)=
5
16
t cos(4t)+

X
n=1
n=/ 4

1
(¡1)n+1 20

n
sin(nt)
32¡ 2n2 :

As in the previous example, this solution cannot really be simplified. Make some plots to appreciate the
dominating character of the term resulting from resonance!

Important comment. Note that the general solution is

y(t)=
5
16
t cos(4t)+

X
n=1
n=/ 4

1
(¡1)n+1 20

n
sin(nt)
32¡ 2n2 +C1cos(4t)+C2sin(4t)

and that it always features the resonant term.
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