Fourier cosine series and Fourier sine series

Suppose we have a function f(t) which is defined on a finite interval [0, L]. Depending on the kind of application, we can extend f(t) to a periodic function in three natural ways; in each case, we can then compute a Fourier series for f(t) (which will agree with f(t) on [0, L]).

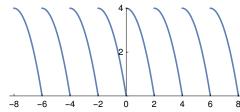
Comment. Here, we do not worry about the definition of f(t) at specific individual points like t = 0 and t = L, or at jump discontinuities. Recall that, at a discontinuity, a Fourier series takes the average value.

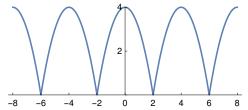
- (a) We can extend f(t) to an L-periodic function. In that case, we obtain the Fourier series $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \bigg(a_n \text{cos} \bigg(\frac{2\pi n \, t}{L} \bigg) + b_n \text{sin} \bigg(\frac{2\pi n \, t}{L} \bigg) \bigg).$
- (b) We can extend f(t) to an even 2L-periodic function. In that case, we obtain the Fourier cosine series $f(t) = \frac{\tilde{a}_0}{2} + \sum_{n=1}^{\infty} \tilde{a}_n \cos\left(\frac{\pi nt}{L}\right)$.
- (c) We can extend f(t) to an odd 2L-periodic function. In that case, we obtain the Fourier sine series $f(t) = \sum_{n=1}^{\infty} \, \tilde{b}_n \sin\!\left(\frac{\pi n t}{L}\right)$.

Example 137. Consider the function $f(t) = 4 - t^2$, defined for $t \in [0, 2]$.

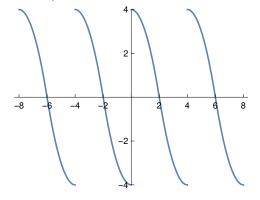
- (a) Sketch the 2-periodic extension of f(t).
- (b) Sketch the 4-periodic even extension of f(t).
- (c) Sketch the 4-periodic odd extension of f(t).

Solution. The 2-periodic extension as well as the 4-periodic even extension:





The 4-periodic odd extension:



Example 138. As in the previous example, consider the function $f(t) = 4 - t^2$, defined for $t \in [0, 2]$.

- (a) Let F(t) be the Fourier series of f(t) (meaning the 2-periodic extension of f(t)). Determine F(2), $F\left(\frac{5}{2}\right)$ and $F\left(-\frac{1}{2}\right)$.
- (b) Let G(t) be the Fourier cosine series of f(t). Determine G(2), $G\left(\frac{5}{2}\right)$ and $G\left(-\frac{1}{2}\right)$.
- (c) Let H(t) be the Fourier sine series of f(t). Determine H(2), $H\left(\frac{5}{2}\right)$ and $H\left(-\frac{1}{2}\right)$.

Solution.

(a) Note that the extension of f(t) has discontinuities at ..., -2,0,2,4,... (see plot in previous example) and recall that the Fourier series takes average values at these discontinuities:

$$F(2) = \frac{1}{2}(F(2^{-}) + F(2^{+})) = \frac{1}{2}(0+4) = 2$$

$$F\left(\frac{5}{2}\right) = F\left(\frac{5}{2} - 2\right) = f\left(\frac{1}{2}\right) = \frac{15}{4}$$

$$F\left(-\frac{1}{2}\right) = F\left(-\frac{1}{2} + 2\right) = f\left(\frac{3}{2}\right) = \frac{7}{4}$$

(b) G(2) = f(2) = 0 (see plot!)

[Note that $G(2^+)=G(2^+-4)=G(-2^+)=G(2^-)$ where we used that G is even in the last step; in fact, we can show like this that the Fourier cosine series of a continuous function is always continuous.] $G\left(\frac{5}{2}\right)=G\left(\frac{5}{2}-4\right)=G\left(-\frac{3}{2}\right)=f\left(\frac{3}{2}\right)=\frac{7}{4}$ $G\left(-\frac{1}{2}\right)\overset{\text{even}}{=}G\left(\frac{1}{2}\right)=f\left(\frac{1}{2}\right)=\frac{15}{4}$

(c) $H(2)=\frac{1}{2}(f(2^-)-f(2^-))=0$ (see plot!) [Note that $H(2^+)=H(2^+-4)=H(-2^+)=-H(2^-)$ where we used that H is odd in the last step; in fact, we can show like this that the Fourier sine series of a continuous function is always 0 at the jumps.] $H\left(\frac{5}{2}\right)=H\left(\frac{5}{2}-4\right)=H\left(-\frac{3}{2}\right)=-f\left(\frac{3}{2}\right)=-\frac{7}{4}$ $H\left(-\frac{1}{2}\right)\stackrel{\mathrm{odd}}{=}-H\left(\frac{1}{2}\right)=-f\left(\frac{1}{2}\right)=-\frac{15}{4}$

Differentiating and integrating Fourier series

Theorem 139. If f(t) is **continuous** and $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right)$, then* $f'(t) = \sum_{n=1}^{\infty} \left(\frac{n\pi}{L} b_n \cos\left(\frac{n\pi t}{L}\right) - \frac{n\pi}{L} a_n \sin\left(\frac{n\pi t}{L}\right) \right)$ (i.e., we can differentiate termwise).

Technical detail*: f' needs to be, e.g., piecewise smooth (so that it has a Fourier series itself).

Caution! We cannot simply differentiate termwise if f(t) is lacking continuity. See the next example.

Comment. On the other hand, we can integrate termwise (going from the Fourier series of f' = g to the Fourier series of $f = \int g$ because the latter will be continuous). This is illustrated in the example after the next.

Example 140. (caution!) The function $g(t) = \sum_{n \text{ odd}} \frac{4}{\pi n} \sin(n\pi t)$ from Example 136 is not continuous. For all values, except the discontinuities, we have g'(t) = 0. On the other hand, differentiating the Fourier series termwise, results in $4\sum_{n \text{ odd}} \cos(n\pi t)$, which diverges for most values of t (that's easy to check for t=0). This illustrates that we cannot apply Theorem 139 because g(t) is lacking continuity.

[The issues we are facing here can be fixed by generalizing the notion of function to distributions. (Maybe you have heard of the Dirac delta "function".)]

Example 141. Let h(t) be the 2-periodic function with h(t) = |t| for $t \in [-1, 1]$. Compute the Fourier series of h(t).

Solution. We could just use the integral formulas to compute a_n and b_n . Since h(t) is even (plot it!), we will find that $b_n = 0$. Computing a_n is left as an exercise.

Solution. Note that $h(t) = \begin{cases} -t & \text{for } t \in (-1,0) \\ +t & \text{for } t \in (0,1) \end{cases}$ is continuous and h'(t) = g(t), with g(t) as in Example 136. Hence, we can apply Theorem 139 to conclude

$$h'(t) = g(t) = \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi t) \implies h(t) = \sum_{\substack{n=1\\ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \left(-\frac{1}{\pi n}\right) \cos(n\pi t) + C,$$

where
$$C = \frac{a_0}{2} = \frac{1}{2} \int_{-1}^{1} h(t) dt = \frac{1}{2}$$
 is the constant of integration. Thus, $h(t) = \frac{1}{2} - \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi^2 n^2} \cos(n\pi t)$.

Remark. Note that t=0 in the last Fourier series, gives us $\frac{\pi^2}{8}=\frac{1}{1}+\frac{1}{3^2}+\frac{1}{5^2}+\dots$ As an exercise, you can try to find from here the fact that $\sum_{n\geqslant 1}\frac{1}{n^2}=\frac{\pi^2}{6}$. Similarly, we can use Fourier series to find that $\sum_{n\geqslant 1}\frac{1}{n^4}=\frac{\pi^4}{90}$. Just for fun. These are the values $\zeta(2)$ and $\zeta(4)$ of the Riemann zeta function $\zeta(s)$. No such evaluations are known for $\zeta(3),\zeta(5),\dots$ and we don't even know (for sure) whether these are rational numbers. Nobody believes these to be rational numbers, but it was only in 1978 that Apéry proved that $\zeta(3)$ is not a rational number.