
Midterm #1 � Practice MATH 332 � Di�erential Equations II
Midterm: Wednesday, Oct 4, 2023

Please print your name:

Bonus challenge. Let me know about any typos you spot in the posted solutions (or lecture sketches). Any math-
ematical typo, that is not yet fixed by the time you send it to me, is worth a bonus point.

Reminder. No notes, calculators or tools of any kind will be permitted on the midterm exam.

Problem 1. Let M =
�
1 4
6 ¡1

�
.

(a) Determine the general solution to an+1=Man.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

(d) Without further computations, determine eMt.

(e) Determine all equilibrium points of
�
x
y

�0
=M

�
x
y

�
and their stability.

Solution.

(a) We determine the eigenvectors of M . The characteristic polynomial is:

det(M ¡�I)=det
��

1¡� 4
6 ¡1¡�

��
=(1¡�)(¡1¡�)¡ 24=�2¡ 25=(�¡ 5)(�+5)

Hence, the eigenvalues are �=5 and �=¡5.

� To find an eigenvector v for �=5, we need to solve
�
¡4 4
6 ¡6

�
v=0.

Hence, v=
�
1
1

�
is an eigenvector for �=5.

� To find an eigenvector v for �=¡5, we need to solve
�
6 4
6 4

�
v=0.

Hence, v=
�
¡2
3

�
is an eigenvector for �=¡5.

Hence, the general solution is C1
�
1
1

�
5n+C2

�
¡2
3

�
(¡5)n.

(b) The corresponding fundamental matrix solution is �n=
�
5n ¡2(¡5)n
5n 3(¡5)n

�
.

(c) Note that �0=
�
1 ¡2
1 3

�
, so that �0

¡1= 1

5

�
3 2
¡1 1

�
. It follows that

Mn=�n�0
¡1=

�
5n ¡2(¡5)n
5n 3(¡5)n

�
1
5

�
3 2
¡1 1

�
= 1
5

�
3 � 5n+2(¡5)n 2 � 5n¡ 2(¡5)n
3 � 5n¡ 3(¡5)n 2 � 5n+3(¡5)n

�
:

(d) We just need to replace 5n and (¡5)n by e5t and e¡5t respectively, to obtain

eMt= 1
5

"
3e5t+2e¡5t 2e5t¡ 2e¡5t
3e5t¡ 3e¡5t 2e5t+3e¡5t

#
:

(e) The only equilibrium point is (0; 0) and it is unstable.
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Since M is invertible, solving M
�
x
y

�
=0 we only get the unique solution

�
x
y

�
=0, which means that only (0;0)

is an equilibrium point. On the other hand, looking at eMt we see that the eigenvalues of M are 5 and ¡5.
Because one eigenvalue is positive, the equilibrium point is unstable.

(For instance, we see that C1
�
1
1

�
e5t is a solution for any C1 which means that a trajectory in the phase portrait

is the line through the origin spanned by
�
1
1

�
; however, this trajectory �flows away� from (0;0) because e5t!1

as t!1. In fact, the general solution is C1
�
1
1

�
e5t+C2

�
¡2
3

�
e¡5t and we see that all corresponding trajectories

�flow away� from the origin unless C1=0. Since there are trajectories (the ones corresponding to C1=0) that
do �flow into� the origin, the origin is a saddle point . Saddle points are always unstable.)

Problem 2.

(a) Circle the phase portrait below which belongs to dx

dt
= y2¡ 1, dy

dt
= y � (x¡ 1).

(b) Determine all equilibrium points and classify the stability of each.

2 1 0 1 2

2

1

0

1

2

2 1 0 1 2

2

1

0

1

2

2 1 0 1 2

2

1

0

1

2

Solution.

(a) The first plot is the correct one.

An easy way to tell in this case is to compute the equilibrium points first.

Another way to tell would be to look at certain points that distinguish the plots:

� For instance, looking at the point (1;¡2), the equations tell us that dx

dt
= y2¡ 1=3, dy

dt
= y � (x¡ 1)= 0

(hence the slope is dy

dx
= 0

3
=0 but that doesn't help in telling the plots apart). That means the trajectory

through (1;¡2) is moving in direction
�
3
0

�
which is horizontal with the arrow pointing to the right

(positive x-direction). This means that the second plot cannot be the correct one.

� As another example, we can look at the point (¡2; 1). The equations tell us that dx

dt
= y2¡ 1 = 0,

dy

dt
= y � (x¡ 1)=¡3. That means the trajectory through (¡2; 1) is moving in direction

�
0
¡3

�
which is

vertical with the arrow pointing down (negative y-direction). This means that the third plot cannot be
the correct one.

(b) We solve y2¡ 1=0 (that is, y=�1) and y(x¡ 1)=0 (that is, x=1 or y=0).

The only possibilities are x=1 and y=�1.

We conclude that the equilibrium points are (1; 1) and (1;¡1).

Both equilibrium points are unstable (because some nearby solutions �flow away� from each). (More precisely,
both are an example of a saddle.)

Armin Straub
straub@southalabama.edu

2



Problem 3.

(a) Write the differential equation y 000+7y 00¡ 3y 0+ y=0 as a system of (first-order) differential equations.

(b) Consider the following system of initial value problems:

y1
00=3y10 +2y20 ¡ 5y1
y2
00= y1

0 ¡ y2
0 +3y2

y1(0)=1; y10(0)=¡2; y2(0)= 3; y20(0)=0

Write it as a first-order initial value problem in the form y 0=My, y(0)= y0.

Solution.

(a) Write y1= y, y2= y 0 and y3= y 00.

Then, y 000+7y 00¡ 3y 0+ y=0 translates into the first-order system

8<:y1
0 = y2
y2
0 = y3
y3
0 =¡y1+3y2¡ 7y3

.

In matrix form, this is y 0=
24 0 1 0

0 0 1
¡1 3 ¡7

35y.
(b) Introduce y3= y1

0 and y4= y2
0 . Then, the given system translates into

y 0=

266664
0 0 1 0
0 0 0 1
¡5 0 3 2
0 3 1 ¡1

377775y ; y(0)=

266664
1
3
¡2
0

377775:
Problem 4. Let M =

�
11 ¡2
3 4

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�

1
¡1

�
.

(e) Determine all equilibrium points of y 0=My and their stability.

Solution.

(a) We determine the eigenvectors of M . The characteristic polynomial is:

det(M ¡�I)=det
��

11¡� ¡2
3 4¡�

��
=(11¡�)(4¡�)+ 6=�2¡ 15�+ 50=(�¡ 5)(�¡ 10)

Hence, the eigenvalues are �=5 and �= 10.

� To find an eigenvector v for �=5, we need to solve
�
6 ¡2
3 ¡1

�
v=0.

Hence, v=
�
1
3

�
is an eigenvector for �=5.

� To find an eigenvector v for �= 10, we need to solve
�
1 ¡2
3 ¡6

�
v=0.

Hence, v=
�
2
1

�
is an eigenvector for �= 10.

Hence, the general solution is C1
�
1
3

�
e5x+C2

�
2
1

�
e10x.
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(b) The corresponding fundamental matrix solution is �=
"

e5x 2e10x

3e5x e10x

#
.

(c) Note that �(0)=
�
1 2
3 1

�
, so that �(0)¡1= 1

5

�
¡1 2
3 ¡1

�
. It follows that

eMx=�(x)�(0)¡1=

"
e5x 2e10x

3e5x e10x

#
1
5

�
¡1 2
3 ¡1

�
= 1
5

"
¡e5x+6e10x 2e5x¡ 2e10x
¡3e5x+3e10x 6e5x¡ e10x

#
:

(d) The solution to the IVP is y(x)= eMx
�

1
¡1

�
= 1

5

"
¡e5x+6e10x 2e5x¡ 2e10x
¡3e5x+3e10x 6e5x¡ e10x

#�
1
¡1

�
= 1

5

"
¡3e5x+8e10x

¡9e5x+4e10x

#
.

(e) The only equilibrium point is (0; 0) and it is unstable.

Since M is invertible, solving My=0 we only get the unique solution y=0, which means that only (0; 0) is an
equilibrium point. On the other hand, the general solution shows that every solution gets larger in magnitude
as x!1 because both e5x and e10x approach 1.

Problem 5.

(a) Find the general solution to y(5)¡ 4y(4)+5y 000¡ 2y 00=0.

(b) Find the general solution to y 000¡ y= ex+7.

(c) Solve y 00+2y 0+ y=2e2x+ e¡x, y(0)=¡1, y 0(0)=2.

(d) Find the general solution to y 00¡ 4y 0+4y=3e2x.

(e) Consider a homogeneous linear differential equation with constant real coefficients which has order 6. Suppose
y(x)=x2e2xcos(x) is a solution. Write down the general solution.

(f) Write down a homogeneous linear differential equation satisfied by y(x)= 1¡ 5x2e¡2x.

(g) Let yp be any solution to the inhomogeneous linear differential equation y 00+ xy = ex. Find a homogeneous
linear differential equation which yp solves. Hint: Do not attempt to solve the DE.

Solution.

(a) The characteristic polynomial p(D)=D5¡ 4D4+5D3¡ 2D2=D2(D¡ 1)2(D¡ 2) has roots 0; 0; 1; 1; 2.

Hence, the general solution is y(x)= c1+ c2x+(c3+ c4x)ex+ c5e
2x.

(b) The characteristic polynomial p(D) =D3¡ 1 of the associated homogeneous DE has roots 1 and ¡1

2
� i

3
p

2
.

These are the �old� roots.

The �new� roots coming from ex+ 7 are 0; 1. Hence, there has to be a particular solution of the form yp=
Axex+B. To find the values of A;B, we plug into the DE.

yp
0 =A(x+1)ex, yp00=A(x+2)ex, yp000=A(x+3)ex

yp
000¡ yp=3Aex¡B=

!
ex+7

Consequently, A= 1

3
, B=¡7.

Hence, the general solution is y(x)=¡7+ (c1+
1

3
x)ex+ c2e

¡x/2cos
�

3
p

2
x
�
+ c3e

¡x/2sin
�

3
p

2
x
�
.

(c) The characteristic polynomial p(D)=D2+2D+1 of the associated homogeneous DE has roots ¡1;¡1. These
are the �old� roots.
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The �new� roots coming from 2e2x+ e¡x are ¡1; 2. Hence, there has to be a particular solution of the form
yp=Ae2x+Bx2e¡x. To find the values of A;B, we plug into the DE.

yp
0 =2Ae2x+B(2x¡x2)e¡x, yp00=4Ae2x+B(2¡ 4x+x2)e¡x

yp
00+2yp0 + yp=9Ae2x+2Be¡x=

!
2e2x+ e¡x

Consequently, A= 2

9
, B= 1

2
.

Hence, the general solution is y(x)= 2

9
e2x+ 1

2
x2e¡x+ c1e¡x+ c2xe¡x. Now, we use the initial values to find the

values for c1 and c2:

y(0)= 2

9
+ c1=

! ¡1, so that c1=¡11
9
.

y 0(0)=
h
4

9
e2x+

¡
x¡ 1

2
x2

�
e¡x+ 11

9
e¡x+ c2(1¡x)e¡x

i
x=0

= 5

3
+ c2=

!
2, so that c2=

1

3
.

In conclusion, the unique solution to the IVP is y(x)= 2

9
e2x+ 1

2
x2e¡x¡ 11

9
e¡x+ 1

3
xe¡x.

(d) The characteristic polynomial p(D)=D2¡ 4D¡ 4 of the associated homogeneous DE has �old� roots 2; 2.

The �new� roots coming from 3e2x are 2. Hence, there has to be a particular solution of the form yp=Ax2e2x.
To find the value of A, we plug into the DE.

yp
0 =2A(x+x2)e2x, yp

00=2A(1+ 4x+2x2)e2x

yp
00¡ 4yp0 +4yp= [2A(1+ 4x+2x2)¡ 8A(x+x2)+ 4Ax2]e2x=2Ae2x=

!
3e2x. Consequently, A= 3

2
.

Hence, the general solution is
¡
c1+ c2x+

3

2
x2

�
e2x.

(e) y(x)=x2e2xcos(x) is a solution of p(D)y=0 if and only if 2� i are three times repeated roots of the charac-
teristic polynomial p(D). Since the order of the DE is 6, there can be no further roots.

The general solution of this DE is y(x)= (c1+ c2x+ c3x
2)e2xcos(x)+ (c4+ c5x+ c6x

2)e2xsin(x).

(f) y(x)=1¡5x2e¡2x is a solution of p(D)y=0 if and only if ¡2;¡2;¡2;0 are roots of the characteristic polynomial
p(D). Hence, the simplest DE is obtained from p(D)=D(D+2)3=D4+6D3+ 12D2+8D.

The corresponding recurrence is y(4)+6y 000+ 12y 00+8y 0=0.

(g) To kill ex, we apply D¡ 1 to both sides of the DE y 00+xy= ex.

The result is the homogeneous linear DE y 000¡ y 00+xy 0+(1¡x)y=0.

Comment. If we are comfortable computing with operators, we can apply the relation Dx= xD + 1, to
(D¡ 1)(D2+x)=D3¡D2+Dx¡x=D3¡D2+xD+1¡x to reach the same conclusion.

Problem 6.

(a) Write down a (homogeneous linear) recurrence equation satisfied by an=3n¡ 2n.

(b) Write down a (homogeneous linear) recurrence equation satisfied by an=n23n¡ 2n.

Solution.

(a) an=3n¡ 2n is a solution of p(N)an=0 if and only if both 3 and 2 are a root of the characteristic polynomial
p(N). Hence, the simplest recurrence is obtained from p(N)= (N ¡ 2)(N ¡ 3)=N2¡ 5N +6.

The corresponding recurrence is an+2=5an+1¡ 6an.

(b) an= n23n¡ 2n is a solution of p(N)an= 0 if and only if 3 (repeated three times) and 2 are a root of the
characteristic polynomial p(N). Hence, the simplest recurrence is obtained from p(N)= (N ¡ 2)(N ¡ 3)3.
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The corresponding recurrence is (N ¡ 2)(N ¡ 3)3an=0.

[Spelled out, this is an+4= 11an+3¡ 45an+2+ 81an+1¡ 54an.]

Problem 7. Consider the sequence an defined by an+2= an+1+6an and a0=3, a1=¡1.

(a) Determine the first few terms of the sequence.

(b) Find a Binet-like formula for an.

(c) Determine lim
n!1

an+1
an

.

Solution.

(a) a2= 17, a3= 11

(b) The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 6 has roots 3;¡2.

Hence, an=�1 3n+�2 (¡2)n and we only need to figure out the two unknowns �1, �2. We can do that using
the two initial conditions: a0=�1+�2=3, a1=3�1¡ 2�2=¡1.

Solving, we find �1=1 and �2=2 so that, in conclusion, an=3n+2 � (¡2)n.

(c) It follows from the Binet-like formula that lim
n!1

an+1
an

=3.
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