Sketch of Lecture 35 Wed, 11/29/2023

\ The inhomogeneous heat equation \

We next indicate that we can similarly solve the inhomogeneous heat equation (with inhomoge-
neous boundary conditions).

Comment. We indicated earlier that

Ut =kUgpy (PDE)

u(0,t)=a, wu(L,t)=>b (BC)

u(z,0)= f(z), «e(0,L) 1c)
can be solved by realizing that Az + B solves (PDE).
Indeed, let v(z) = a + bfTax (so that v(0) = a and v(L) = b). We then look for a solution of the form
u(z,t) =v(x)+w(x,t). Note that u(x,t) solves (PDE)+(BC)+(IC) if and only if w(z,t) solves:

wi=kWwgy (PDE)
w(0,t) =0, w(L,t)=0 (BC*)
w(z,0)= f(z)—v(z), z€(0,L) (1IC)

This is the (homogeneous) heat equation that we know how to solve.

v(x) is called the steady-state solution (it does not depend on time!) and w(x, t) the transient solution (note
that w(z, t) and its partial derivatives tend to zero as t — co because of the boundary conditions (BC*)).

U = SUypy + 422 (PDE)
Example 163. Consider the heat flow problem: u(0,¢)=1, u,(3,t)=-5 (BC)
u(z,0)= f(x), z€(0,3) (IC)

Determine the steady-state solution and spell out equations characterizing the transient solution.

Solution. We look for a solution of the form u(z,t) =v(x) + w(x,t), where v(x) is the steady-state solution
and where w(z,t) is the transient solution which (together with its derivatives) tends to zero as t — oco.

e Plugging into (PDE), we get w; = 3v" + 3wy, + 42, Letting t — 0o, this becomes 0 = 3v" + 422

Note that this also implies that w; = 3w, .

e Plugging into (BC), we get v(0) +w(0,t) =1 and v’(3) + w,(3,t) = —5.
Letting t — 0o, these become v(0) =1 and v/(3) = —5.

e Solving the ODE 0 = 3v" + 422, we find

v(:r)—//—ngdxda:_/(—;le—I—C)dx——;m4+0x+D.

The boundary conditions v(0) =1 and v/(3) = —5 imply D=1 and —% 334 C = —5 (so that C =7).

In conclusion, the steady-state solution is v(x) = —%x‘* + 1+ 7.

On the other hand, the transient solution w(x,t) is characterized as the unique solution to:

Wi = 3Wgq (PDE*)
w(0,t) =0, wz(3,t)=0 (BC*)
wlz, 0) = f(z) - v(z) (1c*)

This homogeneous heat flow problem can now be solved using separation of variables.
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U = 2Upy + e~ v/2
Example 164. For t >0 and x € [0,4], consider the heat flow problem: u;gg’ g i 312
u(z,0) = f(z)

Determine the steady-state solution and spell out equations characterizing the transient solution.

Solution. We look for a solution of the form u(z, t) = v(x) + w(x, t), where v(z) is the steady-state solution
and where the transient solution w(x,t) tends to zero as t — oo (as do its derivatives).

e Plugging into (PDE), we get w; = 20"+ 2w, + e~ /2. Letting t — 0o, this becomes 0 = 20"/ 4 ¢~ %/2.
e Plugging into (BC), we get w;(0,t) +v'(0) =3 and w(4,t) + v(4) = —2.
Letting t — oo, these become v/(0) =3 and v(4) = —2.

e Solving the ODE 0= 20" + e %/2 we find
v(z) = //—%e_x/deda: = /(e_gc/2 +C)de=—2e"*/2 4 Cz + D.

The boundary conditions v/(0) =3 and v(4) = —2 imply C =2 and —2e "2 +8+ D= -2,
In conclusion, the steady-state solution is v(xz) = —2e ™%/ 4 22 — 10+ 2~ 2.

On the other hand, the transient solution w(x,t) is characterized as the unique solution to:

Wi = 2Wgy
w4(0,6) =0, w(4,t)=0
w(z,0) = f(z) —v(z)

Note. We know how to solve this homogeneous heat equation using separation of variables.
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\ Steady-state temperature: The Laplace equation

(2D and 3D heat equation) In higher dimensions, the heat equation takes the form wu; =

o2 o2
ox? + oy?

2 2
The heat equation is often written as u; =k Au where A = % + 6%2 (2D) or A=
Laplace operator you may know from Calculus Ill.

Other notations. Au= divgradu=V-Vu=V?3u

o2 .
+5.z (3D) is the

If temperature is steady, then u; = 0. Hence, the steady-state temperature u(x, y) must satisfy

(Laplace equation, 2D)

Ugg + Uyy =0

Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions.

It is also known as the “potential equation”; satisfied by electric/gravitational potential functions. (More generally,

such potentials, if not in the vacuum, satisfy the Poisson equation gy, + uyy = f(x, y), the inhomogeneous

version of the Laplace equation.)

Recall from Calculus Il (if you have taken that class) that the gradient of a scalar function f(z,y) is the vector

field F = grad f =V [ =] J(*'%) |. One says that Fis a gradient field and f is a potential function for F
Y\

(for instance, F' could be a gravitational field with gravitational potential f).

The divergence of a vector field G = [ Zg’ z)) } is div G = g, + hy. One also writes divG =V - G.

The gradient field of a scalar function f is divergence-free if and only if f satisfies the Laplace equation A f =0.

One way to describe a unique solution to the Laplace equation within a region is by specifying the
values of u(z, y) along the boundary of that region.

This is particularly natural for steady-state temperatures profiles of a region R. The Laplace equation governs
how temperature behaves inside the region but we need to also prescribe the temperature on the boundary.

The PDE with such a boundary condition is called a Dirichlet problem:

(Dirichlet problem)

Ugy + Uyy = 0 within region R

u(z,y)= f(x,y) on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region R, and prescribed values
on the boundary of that region (“Dirichlet boundary conditions”).
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