Notes for Lecture 29 Mon, 11/6/2023

 Fourier cosine series and Fourier sine series |

Suppose we have a function f(t) which is defined on a finite interval [0, L]. Depending on the
kind of application, we can extend f(t) to a periodic function in three natural ways; in each case,
we can then compute a Fourier series for f(¢) (which will agree with f(¢) on [0, L]).

Comment. Here, we do not worry about the definition of f(t) at specific individual points like t=0 and t =L,
or at jump discontinuities. Recall that, at a discontinuity, a Fourier series takes the average value.

(a) We can extend f(t) to an L-periodic function.
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(b) We can extend f(t) to an even 2L-periodic function.

+ 21 dncos<7TTnt).

In that case, we obtain the Fourier cosine series f(t) =
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(c) We can extend f() to an odd 2L-periodic function.
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In that case, we obtain the Fourier sine series f(t)= E bnsm(%)
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Example 141. Consider the function f(t) =4 —t2, defined for ¢ € [0, 2].
(a) Sketch the 2-periodic extension of f(?).
(b) Sketch the 4-periodic even extension of f(?).

(c) Sketch the 4-periodic odd extension of f(%).

Solution. The 2-periodic extension as well as the 4-periodic even extension:
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The 4-periodic odd extension:
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Example 142. As in the previous example, consider the function f(t) = 4 — t2, defined for
tel0,2].

(a) Let F'(t) be the Fourier series of f(t) (meaning the 2-periodic extension of f(t)). Deter-
mine F(2), F<%) and F(—%)
(b) Let G(t) be the Fourier cosine series of f(t). Determine G(2), G<%) and G(—%).

(c) Let H(t) be the Fourier sine series of f(t). Determine H(2), H(g) and H(—%)
Solution.
(a) Note that the extension of f(t) has discontinuities at ..., —2,0,2,4, ... (see plot in previous example) and

recall that the Fourier series takes average values at these discontinuities:
F(2)=4(F(27)+ F(2h)=5(0+4)=2

F(2)-r(2-2)=s(2) =2
(C2)=rl£02)a(2)-
(b) G(2)= f(2) =0 (see plot!)

[Note that G(27) = G(2F — 4) = G(—2T) = G(27) where we used that G is even in the last step; in
fact, we can show like this that the Fourier cosine series of a continuous function is always continuous.]

e(3)=c(3-1)=0(-3)=1(3)-
o(-3)=1(3)=%
() H(2)=5(f(27) = £(27)) =0 (see plot!)

[Note that H(21) = H (2T —4)= H(—2T)= —H(27) where we used that H is odd in the last step; in
fact, we can show like this that the Fourier sine series of a continuous function is always 0 at the jumps.]

()= (3-1)<(-3) -4(3) -3
(-5)=-1(3)--%

| Fourier series and linear differential equations |

In the following examples, we consider inhomogeneous linear DEs p(D)y = F'(t) where F'(t) is a
periodic function that can be expressed as a Fourier series. We first review the notion of resonance
(and how to predict it) and then solve such DEs.
Context. Recall that the inhomogeneous DE my'"’ + ky = F(t) describes, for instance, the motion of a mass
m on a spring with spring constant k under the influence of an external force F'(t). (Note how each term in the

DE corresponds to a force: my’’ =ma from Newton's second law, ky from Hooke's law for springs, and F'(t)
the external force.)

Example 143. Consider the linear DE my” + ky = cos(wt). For which (external) frequencies
w >0 does resonance occur?
Solution. The characteristic roots (the roots of p(D)=mD?+ k) are ii\/m. Correspondingly, the solutions
of the homogeneous equation my’’ + ky =0 are combinations of cos(wot) and sin(wot), where wo=+/k /m (wo

is called the natural frequency of the DE). Resonance occurs in the case w = wg when the external frequency
matches the natural frequency.

Review. If w=wq (overlapping roots), then there is particular solution of the form y,(t) = A cos(wt) 4+ B sin(wt)
(for specific values of A and B). The general solution is y(t) = A cos(wt) + B sin(wt) + Cicos(wot) +
Cossin(wot), which is a bounded function of ¢. In contrast, if w = wg, then the general solution is y(¢) =
(C1+ At)cos(wot) + (C2 + Bt)sin(wot) and this function is unbounded.
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Example 144. A mass-spring system is described by the DE 2y"” + 32y = Z M

= n +1
For which w does resonance occur?

Solution. The roots of p(D) = 2D? + 32 are +4i, so that that the natural frequency is 4. Resonance
therefore occurs if 4 equals nw for some n € {1, 2, 3, ...}. Equivalently, resonance occurs if w=4/n for some

ne{l,2,3,..}.

oo
Example 145. A mass-spring system is described by the DE my"” + y = Z %sin(%).
n=1

For which m does resonance occur?
Solution. The roots of p(D) =mD? + 1 are +i/,/m, so that the natural frequency is 1/./m. Resonance
therefore occurs if 1 /\/m =n /3 for some n € {1,2, 3, ...}. Equivalently, resonance occurs if m =9 /n? for
some n €{1,2,3,...}.
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