
Notes for Lecture 29 Mon, 11/6/2023

Fourier cosine series and Fourier sine series

Suppose we have a function f(t) which is defined on a finite interval [0; L]. Depending on the
kind of application, we can extend f(t) to a periodic function in three natural ways; in each case,
we can then compute a Fourier series for f(t) (which will agree with f(t) on [0; L]).
Comment. Here, we do not worry about the definition of f(t) at specific individual points like t=0 and t=L,
or at jump discontinuities. Recall that, at a discontinuity, a Fourier series takes the average value.

(a) We can extend f(t) to an L-periodic function.
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(b) We can extend f(t) to an even 2L-periodic function.

In that case, we obtain the Fourier cosine series f(t)= a~0
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(c) We can extend f(t) to an odd 2L-periodic function.

In that case, we obtain the Fourier sine series f(t)=
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Example 141. Consider the function f(t)= 4¡ t2, defined for t2 [0; 2].

(a) Sketch the 2-periodic extension of f(t).

(b) Sketch the 4-periodic even extension of f(t).

(c) Sketch the 4-periodic odd extension of f(t).

Solution. The 2-periodic extension as well as the 4-periodic even extension:
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The 4-periodic odd extension:
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Example 142. As in the previous example, consider the function f(t) = 4 ¡ t2, defined for
t2 [0; 2].

(a) Let F (t) be the Fourier series of f(t) (meaning the 2-periodic extension of f(t)). Deter-
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(b) Let G(t) be the Fourier cosine series of f(t). Determine G(2), G
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(c) Let H(t) be the Fourier sine series of f(t). Determine H(2), H
�
5

2

�
and H

�
¡1

2

�
.

Solution.

(a) Note that the extension of f(t) has discontinuities at :::;¡2;0;2;4; ::: (see plot in previous example) and
recall that the Fourier series takes average values at these discontinuities:
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(b) G(2)= f(2)=0 (see plot!)

[Note that G(2+) =G(2+¡ 4) =G(¡2+) =G(2¡) where we used that G is even in the last step; in
fact, we can show like this that the Fourier cosine series of a continuous function is always continuous.]
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(c) H(2)= 1

2
(f(2¡)¡ f(2¡))= 0 (see plot!)

[Note that H(2+)=H(2+¡ 4)=H(¡2+)=¡H(2¡) where we used that H is odd in the last step; in
fact, we can show like this that the Fourier sine series of a continuous function is always 0 at the jumps.]
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Fourier series and linear differential equations

In the following examples, we consider inhomogeneous linear DEs p(D)y=F (t) where F (t) is a
periodic function that can be expressed as a Fourier series. We first review the notion of resonance
(and how to predict it) and then solve such DEs.
Context. Recall that the inhomogeneous DE my 00+ ky = F (t) describes, for instance, the motion of a mass
m on a spring with spring constant k under the influence of an external force F (t). (Note how each term in the
DE corresponds to a force: my 00=ma from Newton's second law, ky from Hooke's law for springs, and F (t)
the external force.)

Example 143. Consider the linear DE my 00+ ky = cos(!t). For which (external) frequencies
!> 0 does resonance occur?
Solution. The characteristic roots (the roots of p(D)=mD2+k) are�i k/m

p
. Correspondingly, the solutions

of the homogeneous equationmy 00+ky=0 are combinations of cos(!0t) and sin(!0t), where !0= k/m
p

(!0
is called the natural frequency of the DE). Resonance occurs in the case != !0 when the external frequency
matches the natural frequency.
Review. If !=/ !0 (overlapping roots), then there is particular solution of the form yp(t)=Acos(!t)+B sin(!t)
(for specific values of A and B). The general solution is y(t) = A cos(!t) + B sin(!t) + C1cos(!0t) +
C2sin(!0t), which is a bounded function of t. In contrast, if ! = !0, then the general solution is y(t) =
(C1+At)cos(!0t)+ (C2+Bt)sin(!0t) and this function is unbounded.
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Example 144. A mass-spring system is described by the DE 2y 00+ 32y=
X
n=1

1
cos(n!t)
n2+1

.

For which ! does resonance occur?
Solution. The roots of p(D) = 2D2 + 32 are �4i, so that that the natural frequency is 4. Resonance
therefore occurs if 4 equals n! for some n 2 f1; 2; 3; :::g. Equivalently, resonance occurs if != 4/n for some
n2f1; 2; 3; :::g.

Example 145. A mass-spring system is described by the DE my 00+ y=
X
n=1
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For which m does resonance occur?
Solution. The roots of p(D) =mD2 + 1 are �i/ m

p
, so that the natural frequency is 1/ m

p
. Resonance

therefore occurs if 1/ m
p

= n/3 for some n 2 f1; 2; 3; :::g. Equivalently, resonance occurs if m= 9/n2 for
some n2f1; 2; 3; :::g.
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