
Notes for Lecture 20 Tue, 11/10/2020

Review. The heat equation: ut= kuxx

Let us think about what is needed to describe a unique solution of the heat equation.

� Initial condition at t=0: u(x; 0)= f(x) (IC)
This specifies an initial temperature distribution at time t=0.

� Boundary condition at x=0 and x=L: (BC)
Assuming that heat only enters/exits at the boundary (think of our rod as being insulated, except possibly
at the two ends), we need some condition on the temperature at the ends. For instance:

� u(0; t)=A, u(L; t)=B

This models a rod where one end is kept at temperatureA and the other end at temperatureB.

� ux(0; t)= ux(L; t)= 0

This models a rod whose ends are insulated as well.

Under such assumptions, our physical intuition suggests that there should be a unique solution.

Important comment. We can always transform the case u(0; t)=A, u(L; t)=B into u(0; t)=u(L; t)= 0 by
using the fact that u(t; x)= ax+ b solves ut= kuxx. Can you spell this out?

Example 128. (cont'd) To get a feeling, let us find some solutions to ut=uxx.

� u(x; t)= ax+ b is a solution.

� For instance, u(x; t)= etex is a solution.
[Not a very interesting one for modeling heat flow because it increases exponentially in time.]

� More interesting are u(x; t)= e−tcos(x) and u(x; t)= e−tsin(x).

� More generally, e−n
2tcos(nx) and e−n

2tsin(nx) are solutions.

Important observation. This actually reveals a strategy for solving the PDE ut=uxx with conditions such as:

u(0; t)=u(�; t)= 0 (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

Namely, the solutions un(x; t)= e−n
2tsin(nx) all satisfy (BC).

It remains to satisfy (IC). Note that un(x;0)= sin(nx). To find u(x; t) such that u(x;0)= f(x), we can write
f(x) as a Fourier sine series (i.e. extend f(x) to a 2�-periodic odd function):

f(x)=
X
n>1

bnsin(nx)

Then u(x; t)=
X
n>1

bnun(x; t)=
X
n>1

bne
−n2tsin(nx) solves the PDE ut=uxx with (BC) and (IC).
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Example 129. Find the unique solution u(x; t) to:
ut= kuxx (PDE)
u(0; t)= u(L; t)= 0 (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

Solution.

� We will first look for simple solutions of (PDE)+(BC) (and then we plan to take a combination of such
solutions that satisfies (IC) as well). Namely, we look for solutions u(x; t) =X(x)T (t). This approach
is called separation of variables and it is crucial for solving other PDEs as well.

� Plugging into (PDE), we get X(x)T 0(t)= kX 00(x)T (t), and so X 00(x)

X(x)
=

T 0(t)

kT (t)
.

Note that the two sides cannot depend on x (because the right-hand side doesn't) and they cannot depend
on t (because the left-hand side doesn't). Hence, they have to be constant. Let's call this constant −�.
Then, X

00(x)

X(x)
=

T 0(t)

kT (t)
= const=:−�.

We thus have X 00+�X =0 and T 0+ �kT =0.

� Consider (BC). Note that u(0; t) =X(0)T (t)= 0 implies X(0)=0.
[Because otherwise T (t)= 0 for all t, which would mean that u(x; t) is the dull zero solution.]
Likewise, u(L; t)=X(L)T (t)= 0 implies X(L)= 0.

� SoX solvesX 00+�X=0,X(0)=0,X(L)=0. We know that, up tomultiples, the only nonzero solutions
are the eigenfunctions X(x)= sin

( �n
L
x
�
corresponding to the eigenvalues �=

( �n
L

�
2, n=1; 2; 3:::.

� On the other hand, T solves T 0+�kT =0, and hence T (t)= e−�kt= e
−
( �n
L

�
2kt.

� Taken together, we have the solutions un(x; t) = e
−
( �n
L

�
2ktsin

( �n
L
x
�
solving (PDE)+(BC).

� We wish to combine these in such a way that (IC) holds as well.
At t=0, un(x; 0)= sin

( �n
L
x
�
. All of these are 2L-periodic.

Hence, we extend f(x), which is only given on (0; L), to an odd 2L-periodic function (its Fourier sine
series!). By making it odd, its Fourier series will only involve sine terms: f(x)=

P
n=1
1 bn sin

( �n
L
x
�
.

Consequently, (PDE)+(BC)+(IC) is solved by

u(x; t)=
X
n=1

1
bn un(x; t) =

X
n=1

1
bn e

−
( �n
L

�
2ktsin

�
�n
L
x
�
:

Example 130. Find the unique solution u(x; t) to:
ut= uxx
u(0; t)= u(1; t)= 0
u(x; 0)= 1; x2 (0; 1)

Solution. This is the case k=1, L=1 and f(x)= 1, x2 (0; 1), of the previous example.
In the final step, we extend f(x) to the 2-periodic odd function of Example 111. In particular, earlier, we have
already computed that the Fourier series is

f(x) =
X
n=1
n odd

1
4
�n

sin(n�x):

Hence, u(x; t) =
X
n=1
n odd

1
4
�n

e−�
2n2tsin(n�x).

Comment. Note that, for t>0, the exponential very quickly approaches 0 (because of the−n2 in the exponent),
so that we get very accurate approximations with only a handful terms.
Make some 3D plots!

Armin Straub
straub@southalabama.edu

46



Notes for Lecture 21 Thu, 11/12/2020

The boundary conditions in the next example model insulated ends.

Example 131. Find the unique solution u(x; t) to:
ut= kuxx (PDE)
ux(0; t)=ux(L; t)= 0 (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

Solution.

� We proceed as before and look for solutions u(x; t)=X(x)T (t) (separation of variables).

Plugging into (PDE), we get X(x)T 0(t)= kX 00(x)T (t), and so X 00(x)

X(x)
=

T 0(t)

kT (t)
= const=:−�.

We thus have X 00+�X =0 and T 0+ �kT =0.

� From the (BC), i.e. ux(0; t)=X 0(0)T (t)= 0, we get X 0(0)=0.
Likewise, ux(L; t)=X 0(L)T (t) = 0 implies X 0(L)= 0.

� So X solves X 00+�X=0, X 0(0)=0, X 0(L)=0. It is left as a homework to show that, up to multiples,
the only nonzero solutions of this eigenvalue problem areX(x)=cos

( �n
L
x
�
corresponding to �=

( �n
L

�
2,

n=0; 1; 2; 3:::. [See practice problems.]

� On the other hand (as before), T solves T 0+ �kT =0, and hence T (t)= e−�kt= e
−
( �n
L

�
2kt.

� Taken together, we have the solutions un(x; t) = e
−
( �n
L

�
2ktcos

( �n
L
x
�
solving (PDE)+(BC).

� We wish to combine these in such a way that (IC) holds.
At t=0, un(x; 0)= cos

( �n
L
x
�
. All of these are 2L-periodic.

Hence, we extend f(x), which is only given on (0; L), to an even 2L-periodic function (its Fourier cosine
series!). By making it even, its Fourier series only involves cosine terms: f(x)= a0

2
+
P

n=0
1 ancos

( �n
L
x
�
.

Note that

an=
1
L

Z
−L

L

f(x)cos
�
n�x
L

�
dx=

2
L

Z
0

L

f(x)cos
�
n�x
L

�
dx;

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x)
on its original interval of definition.

Consequently, (PDE)+(BC)+(IC) is solved by

u(x; t)=
a0
2
u0(x; t)+

X
n=1

1
anun(x; t)=

a0
2
+

X
n=1

1
an e

−
( �n
L

�
2ktcos

�
�n
L
x
�
;

where

an=
2
L

Z
0

L

f(x)cos
�n�x

L

�
dx:
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The inhomogeneous heat equation

We next indicate that we can similarly solve the inhomogeneous heat equation (with inhomoge-
neous boundary conditions).

Comment. We indicated earlier that

ut= kuxx (PDE)
u(0; t)= a; u(L; t)= b (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

can be solved by realizing that Ax+B solves (PDE).

Indeed, let v(x) = a +
b− a
L

x (so that v(0) = a and v(L) = b). We then look for a solution of the form
u(x; t)= v(x)+w(x; t). Note that u(x; t) solves (PDE)+(BC)+(IC) if and only if w(x; t) solves:

wt= kwxx (PDE)
w(0; t)= 0; w(L; t)= 0 (BC*)
w(x; 0)= f(x)− v(x); x2 (0; L) (IC)

This the (homogeneous) heat equation that we know how to solve.
v(x) is called the steady-state solution (it does not depend on time!) and w(x; t) the transient solution (note
that w(x; t) and its partial derivatives tend to zero as t!1).

Example 132. Consider the heat flow problem:
ut=3uxx+4x2 (PDE)
u(0; t)= 1; ux(3; t)=−5 (BC)
u(x; 0)= f(x); x2 (0; 3) (IC)

Determine the steady-state solution and spell out equations characterizing the transient solution.
Solution. We look for a solution of the form u(x; t) = v(x) +w(x; t), where v(x) is the steady-state solution
and where w(x; t) is the transient solution which (together with its derivatives) tends to zero as t!1.

� Plugging into (PDE), we get wt=3v 00+3wxx+4x2. Letting t!1, this becomes 0=3v 00+4x2.
Note that this also implies that wt=3wxx.

� Plugging into (BC), we get v(0)+w(0; t) = 1 and v 0(3)+wx(3; t)=−5.
Letting t!1, these become v(0)= 1 and v 0(3)=−5.

� Solving the ODE 0=3v 00+4x2 with boundary conditions v(0)= 1 and v 0(3)=−5, we find

v(x)=

ZZ
−4
3
x2dxdx=−1

9
x4+C1+C2x

and therefore the steady-state solution v(x)=−1

9
x4+1+7x.

On the other hand, the transient solution w(x; t) is characterized as the unique solution to:

wt=3wxx (PDE*)
w(0; t)= 0; wx(3; t)= 0 (BC*)
w(x; 0)= f(x)− v(x) (IC*)

We know how to solve this homogeneous heat flow problem (see practice problems) using separation of variables.
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Notes for Lecture 22 Tue, 11/17/2020

Steady-state temperature

Review. (2D and 3D heat equation) In higher dimensions, the heat equation takes the form
ut= k(uxx+uyy) or ut= k(uxx+uyy+uzz).

Note that �u= uxx+ uyy+uzz is the Laplace operator you may know from Calculus III (more below).

If temperature is steady, then ut= 0. Hence, the steady-state temperature u(x; y) must satisfy
the PDE uxx+uyy=0.

(Laplace equation)

uxx+uyy=0

Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions.
Comment. Also known as the �potential equation�; satisfied by electric/gravitational potential functions.
Recall from Calculus III (if you have taken that class) that the gradient of a scalar function f(x; y) is the vector

field F = grad f =rf =
�
fx(x; y)
fy(x; y)

�
. One says that F is a gradient field and f is a potential function for F

(for instance, F could be a gravitational field with gravitational potential f).

The divergence of a vector field G=
�
g(x; y)
h(x; y)

�
is divG= gx+hy. One also writes divG=r �G.

The gradient field of a scalar function f is divergence-free if and only if f satisfies the Laplace equation �f =0.
Other notations. �f = divgrad f =r �rf =r2f
Boundary conditions. For steady-state temperatures profiles, it is natural to prescribe the temperature on the
boundary of a region R�R2 (or R�R3 in the 3D case).
Comment. Gravitational and electrostatic potentials (not in the vacuum) satisfy the Poisson equation uxx+
uyy= f(x; y), the inhomogeneous version of the Laplace equation.

(Dirichlet problem)
uxx+ uyy=0 within region R

u(x; y)= f(x; y) on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region R, and prescribed values
on the boundary of that region (�Dirichlet boundary conditions�).

In our next example we solve the Dirichlet problem in the case when R is a rectangle.
Important observation. We are using homogeneous boundary conditions for three of the sides. That is actually
no loss of generality.

Indeed, note that in order to solve
uxx+uyy=0 (PDE)
u(x; 0) = f1(x)
u(x; b) = f2(x)
u(0; y) = f3(y)
u(a; y) = f4(y)

(BC)
we can solve the four Dirichlet problems:

uxx+uyy=0
u(x; 0) = f1(x)
u(x; b) = 0
u(0; y) = 0
u(a; y) = 0

uxx+uyy=0
u(x; 0) = 0
u(x; b) = f2(x)
u(0; y) = 0
u(a; y) = 0

uxx+uyy=0
u(x; 0) = 0
u(x; b) = 0
u(0; y) = f3(y)
u(a; y) = 0

uxx+uyy=0
u(x; 0) = 0
u(x; b) = 0
u(0; y) = 0
u(a; y) = f4(y)

The sum of the four solutions then solves the Dirichlet problem we started with.
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Example 133. Find the unique solution u(x; y) to:
uxx+uyy=0 (PDE)
u(x; 0) = f(x)
u(x; b) = 0
u(0; y) = 0
u(a; y) = 0

(BC)

Solution.

� We proceed as before and look for solutions u(x; y)=X(x)Y (y) (separation of variables).

Plugging into (PDE), we get X 00(x)Y (y)+X(x)Y 00(y), and so X 00(x)

X(x)
=−Y 00(y)

Y (y)
= const :=−�.

We thus have X 00+�X =0 and Y 00−�Y =0.

� From the last three (BC), we get X(0)= 0, X(a)= 0, Y (b)= 0.
We ignore the first (inhomogeneous) condition for now.

� So X solves X 00+�X =0, X(0)= 0, X(a)= 0.
From earlier, we know that, up to multiples, the only nonzero solutions of this eigenvalue problem are
X(x)= sin

( �n
a
x
�
corresponding to �=

( �n
a

�
2, n=1; 2; 3:::.

� On the other hand, Y solves Y 00− �Y =0, and hence Y (y) =Ae �
p

y+Be− �
p

y.

The condition Y (b) = 0 implies that Ae �
p

b+Be− �
p

b=0 so that B=−Ae2 �
p

b.

Hence, Y (y)=A
(
e �
p

y− e− �
p

(y−2b)�.
� Taken together, we have the solutions un(x; y)=sin

( �n
a
x
��
e
�n

a
y−e−

�n

a
(y−2b)

�
solving (PDE)+(BC),

with the exception of u(x; 0)= f(x).

� We wish to combine these in such a way that u(x; 0)= f(x) holds as well.

At y=0, un(x; 0)= sin
( �n
a
x
�
(1− e2�nb/a). All of these are 2a-periodic.

Hence, we extend f(x), which is only given on (0; a), to an odd 2a-periodic function (its Fourier sine
series!). By making it odd, its Fourier series will only involve sine terms: f(x)=

P
n=1
1 bn sin

( �n
a
x
�
.

Note that

bn=
1
a

Z
−a

a

f(x)sin
�n�x

a

�
dx=

2
a

Z
0

a

f(x)sin
�n�x

a

�
dx;

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x)
on its original interval of definition.

Consequently, (PDE)+(BC) is solved by

u(x; y) =
X
n=1

1
bn

1− e2�nb/a
un(x; y)=

X
n=1

1
bn

1− e2�nb/a
sin

�
�n
a
x
��
e
�n

a
y− e

−�n

a
(y−2b)

�
;

where

bn=
2
a

Z
0

a

f(x)sin
�
n�x
a

�
dx:
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Example 134. Find the unique solution u(x; y) to:
uxx+ uyy=0 (PDE)
u(x; 0) = 1
u(x; 2) = 0
u(0; y) = 0
u(1; y) = 0

(BC)

Solution. This is the special case of the previous example with a=1, b=2 and
f(x)= 1 for x2 (0; 1).
From Example 111, we know that f(x) has the Fourier sine series

f(x)=
X
n=1
n odd

1
4
�n

sin(n�x); x2 (0; 1):

Hence,

u(x; y)=
X
n=1
n odd

1
4
�n

1

1− e4�n
sin(�nx)(e�ny− e−�n(y−4)):

Comment. The temperature at the center is u(1
2
; 1) � 0.0549 (only the first

term of the infinite sum suffices for this estimate; the first three terms suffice for
9 digits of accuracy).

Example 135. Find the unique solution u(x; y) to:
uxx+ uyy=0 (PDE)
u(x; 0) = 0
u(x; 2) = 3
u(0; y) = 0
u(1; y) = 0

(BC)

Solution. Instead of starting from scratch (homework exercise!), let us reuse our computations:
Let v(x; y)=u(x; 2− y). Then vxx+ vyy=0, v(x; 0)=3, v(x; 2)= 0, v(0; y)= 0, v(1; y) = 0.
Hence, it follows from the previous example that

v(x; y) = 3
X
n=1
n odd

1
4
�n

1

1− e4�n sin(�nx)(e
�ny− e−�n(y−4)):

Consequently,

u(x; y) = v(x; 2− y) = 3
X
n=1
n odd

1
4
�n

1

1− e4�n sin(�nx)(e
�n(2−y)− e�n(2+y)):

Example 136. Find the unique solution u(x; y) to:

uxx+uyy = 0
u(x; 0)=2; u(x; 2)=3
u(0; y)= 0; u(1; y)= 0

Solution. Note that u(x; y) is a combination of the solutions to the previous two
examples!

u(x; y)=
X
n=1
n odd

1
4
�n

sin(�nx)
1− e4�n [2(e

�ny−e−�n(y−4))+3(e�n(2−y)−e�n(2+y))]:
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