Notes for Lecture 20 Tue, 11/10/2020

Review. The heat equation: u; = k.,

Let us think about what is needed to describe a unique solution of the heat equation.

e Initial condition at t =0: u(z,0)= f(z) (IC)

This specifies an initial temperature distribution at time ¢t =0.

e Boundary condition at z =0 and z = L: (BC)

Assuming that heat only enters/exits at the boundary (think of our rod as being insulated, except possibly
at the two ends), we need some condition on the temperature at the ends. For instance:

o u(0,t)=A, uw(L,t)=B

This models a rod where one end is kept at temperature A and the other end at temperature B.

o ug(0,t) =wuy(L,t)=0

This models a rod whose ends are insulated as well.

Under such assumptions, our physical intuition suggests that there should be a unique solution.

Important comment. We can always transform the case u(0,t) = A, u(L,t) = B into u(0,t) =u(L,t) =0 by
using the fact that u(t,z) =ax + b solves u; = kuz,. Can you spell this out?

Example 128. (cont’d) To get a feeling, let us find some solutions to u; = ;.
e u(x,t)=ax+bis a solution.

e For instance, u(x,t) =e’e” is a solution.

[Not a very interesting one for modeling heat flow because it increases exponentially in time.]

t

e More interesting are u(z,t) =e ‘cos(z) and u(z,t) = e ’sin(z).

t t

9 2 . .
e More generally, e " "cos(nx) and e~ " 'sin(nx) are solutions.

Important observation. This actually reveals a strategy for solving the PDE wy = u,, with conditions such as:

u(0,t) =u(m,t)=0 (BC)
u(z,0)= f(z), =x€(0,L) (IC)

Namely, the solutions w,(z,t) = e~ " sin(nz) all satisfy (BC).
It remains to satisfy (IC). Note that u,(x,0)=sin(nz). To find u(x,t) such that u(z,0) = f(x), we can write
f(x) as a Fourier sine series (i.e. extend f(x) to a 2m-periodic odd function):

flx)= Z bpsin(nx)

n>1

Then u(z,t) = Z bpun(x,t) = Z bne ™’tsin(nx) solves the PDE u; = u,, with (BC) and (IC).
n>1 n>1
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U= KUyy (PDE)
Example 129. Find the unique solution u(x,t) to: u(0,t)= (L,t) (BC)
u(z,0) = f(x), (0 Ly (IC)

Solution.

e We will first look for simple solutions of (PDE)+(BC) (and then we plan to take a combination of such
solutions that satisfies (IC) as well). Namely, we look for solutions u(x,t) = X (z)T'(t). This approach
is called separation of variables and it is crucial for solving other PDEs as well.

X"(z) _ T'()

X(@)  kTQ@)

Note that the two sides cannot depend on x (because the right-hand side doesn't) and they cannot depend

on t (because the left-hand side doesn’t). Hence, they have to be constant. Let's call this constant —A\.

Then, (&) — T/

"X () kT()

We thus have X"/ + XX =0 and T’ 4+ AkT =0.

e Plugging into (PDE), we get X (2)T'(t) =k X" (z)T(t), and so

=const =: —\.

e Consider (BC). Note that u(0,t) = X (0)T'(¢t) =0 implies X (0) =
[Because otherwise T'(t) =0 for all ¢, which would mean that u(x,t) is the dull zero solution.]
Likewise, u(L,t) = X (L)T(t) =0 implies X(L)=0.

e So X solves X"+ XX =0, X(0)=0, X(L)=0. We know that, up to multiples, the only nonzero solutions

are the eigenfunctions X (z) = sin(%n az) corresponding to the eigenvalues \ = (an)Q’ n=1,2,3...
TN\ 2
e On the other hand, T solves T’ + A\kT =0, and hence T'(t) — e Mt — o (F)RE,

e Taken together, we have the solutions u,(z,t) = 67(%)2ktsin(%n z) solving (PDE)+(BC).

e We wish to combine these in such a way that (IC) holds as well.
At t=0, up(xz,0) = Sin(%x). All of these are 2 L-periodic.
Hence, we extend f(x), which is only given on (0, L), to an odd 2L-periodic function (its Fourier sine

series!). By making it odd, its Fourier series will only involve sine terms: f(x) = Zzozl bn, sin(LLn w)

Consequently, (PDE)+(BC)+(IC) is solved by
e e ™ Qk ™
—(Z2) 2kt .
u(w,t):z_:lbnun(w,t):z_:lbne () Sln(fx).

Ut = Ugy
Example 130. Find the unique solution u(z,t) to: u(0,t)=u(1,t)=0
u(r,0)=1, xz€(0,1)
Solution. This is the case k=1, L=1 and f(z)=1, x € (0,1), of the previous example.

In the final step, we extend f(z) to the 2-periodic odd function of Example 111. In particular, earlier, we have
already computed that the Fourier series is

— 4
flz)= Z %sm(nﬂ'w).

n=1
n odd

o~ 4o

Hence, u(z,t) = Z — e ™ "tsin(nmz).
= ™
n odd

Comment. Note that, for ¢t > 0, the exponential very quickly approaches 0 (because of the —n?in the exponent),
so that we get very accurate approximations with only a handful terms.

Make some 3D plots!
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Notes for Lecture 21 Thu, 11/12/2020

The boundary conditions in the next example model insulated ends.

U= KUy (PDE)

Example 131. Find the unique solution u(z,t) to: u;(0,t) =wu,(L,t)=0 (BC)

u(xz,0)= f(x), x€(0,L) (IC)

Solution.

We proceed as before and look for solutions u(x,t) = X (z)T'(t) (separation of variables).
Plugging into (PDE), we get X (z)T"(t) =kX " (x)T(t), and so X (=) - T'(t)

X0 — BT = const =: —\.
We thus have X"/ +AX =0 and T’ + \kT =0.

From the (BC), i.e. u;(0,t) = X'(0)T(t) =0, we get X'(0) =0.
Likewise, uz(L,t) = X'(L)T(t) =0 implies X'(L)=0.

So X solves X"+ XX =0, X'(0)=0, X'(L)=0. It is left as a homework to show that, up to multiples,

the only nonzero solutions of this eigenvalue problem are X (z) = cos(Lan) corresponding to A= (%)2,
n=0,1,2,3.... [See practice problems.]

On the other hand (as before), T solves T’ + A\kT =0, and hence T'(t) = e~ rt = e (T

Taken together, we have the solutions w,(z,t) = e_(%)%tcos(%naz) solving (PDE)+(BC).

We wish to combine these in such a way that (IC) holds.

At t=0, up(z,0)= Cos(WL—na:). All of these are 2L-periodic.

Hence, we extend f(x), which is only given on (0, L), to an even 2L-periodic function (its Fourier cosine
series!). By making it even, its Fourier series only involves cosine terms: f(z)= % + ZZOZO Ap cos(Ln az)

L
Note that
1 [t nmT 2 (L nmT
an—f[Lf(x)cos( 7 )dm_f/o f(a:)cos( 7 )dm,

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x)
on its original interval of definition.

Consequently, (PDE)+(BC)+(IC) is solved by

where

oo oo
w(w,t) = Luole, )+ > anun(z,t) =L+ 3" ane” (T Meos( T ),
n=1 n=1

an = z/oLf(w)Cos( nzw )dac.
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| The inhomogeneous heat equation |

We next indicate that we can similarly solve the inhomogeneous heat equation (with inhomoge-
neous boundary conditions).

Comment. We indicated earlier that

U = kg (PDE)
u(0,t)=a, u(L,t)=>b (BO)
u(z,0)= f(x), =x€(0,L) (1IC)

can be solved by realizing that Az + B solves (PDE).

Indeed, let v(z) = a + bzaa: (so that v(0) = a and v(L) = b). We then look for a solution of the form

u(z,t) =v(x) +w(x,t). Note that u(z,t) solves (PDE)+(BC)+(IC) if and only if w(x,t) solves:

Wi =kWgy (PDE)
w(0,t)=0, w(L,t)=0 (BC*)
w(z,0)= f(z)—v(z), =x€(0,L) (1IC)

This the (homogeneous) heat equation that we know how to solve.

v(x) is called the steady-state solution (it does not depend on time!) and w(x,t) the transient solution (note
that w(x,t) and its partial derivatives tend to zero as t — o0).

Example 132. Consider the heat flow problem: u(0,t)=1, u,(3,t)=-5 (BC)
u(z,0)=f(z), 2€(0,3) (IC)

Determine the steady-state solution and spell out equations characterizing the transient solution.

Solution. We look for a solution of the form u(z, t) = v(x) + w(x,t), where v(z) is the steady-state solution
and where w(x,t) is the transient solution which (together with its derivatives) tends to zero as t — co.

e Plugging into (PDE), we get w; = 3v" + 3wy, + 422, Letting t — 0o, this becomes 0 = 3v"’ + 42,
Note that this also implies that w; = 3wg,.

e Plugging into (BC), we get v(0) + w(0,t) =1 and v’(3) + wx(3,t) = —5.
Letting ¢t — 0o, these become v(0) =1 and v/(3) = —5.

e Solving the ODE 0 = 3v"' + 422 with boundary conditions v(0) =1 and v’(3) = —5, we find
4 o L 4
v(z) = 3 dedz = —5 +C1+ Cox

and therefore the steady-state solution v(z) = —%z‘l +147x.

On the other hand, the transient solution w(x,t) is characterized as the unique solution to:

Wi = 3Wy e (PDE*)
w(0,t) =0, wz(3,t)=0 (BC*)
w(z,0) = f(z) —v(z) (IC*)

We know how to solve this homogeneous heat flow problem (see practice problems) using separation of variables.
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Notes for Lecture 22 Tue, 11/17/2020

| Steady-state temperature |

Review. (2D and 3D heat equation) In higher dimensions, the heat equation takes the form
Ut = k(Upag + Uyy) OF U = k(Ugq + Uyy + Uss).

Note that Au =gz + uyy + U is the Laplace operator you may know from Calculus Il (more below).

If temperature is steady, then u; = 0. Hence, the steady-state temperature u(xz, y) must satisfy

(Laplace equation)

Ugz + Uyy =0

Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions.
Comment. Also known as the “potential equation”; satisfied by electric/gravitational potential functions.
Recall from Calculus 111 (if you have taken that class) that the gradient of a scalar function f(z,y) is the vector

field F=grad f = Vf:{ ;fgz’ Z% } One says that F' is a gradient field and f is a potential function for F’
Y 9

(for instance, F' could be a gravitational field with gravitational potential f).

The divergence of a vector field G = [ Zgi’ Z% } is div G = g, + hy. One also writes divG =V - G.

The gradient field of a scalar function f is divergence-free if and only if f satisfies the Laplace equation A f =0.
Other notations. Af = divgrad f=V -V f=V2f

Boundary conditions. For steady-state temperatures profiles, it is natural to prescribe the temperature on the
boundary of a region R C IR? (or R C IR? in the 3D case).

Comment. Gravitational and electrostatic potentials (not in the vacuum) satisfy the Poisson equation wu ;. +
uyy = f(x,y), the inhomogeneous version of the Laplace equation.

(Dirichlet problem)

Ugy + Uyy = 0 within region R

u(z,y)= f(x,y) on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region R, and prescribed values
on the boundary of that region (“Dirichlet boundary conditions”).

In our next example we solve the Dirichlet problem in the case when R is a rectangle.

Important observation. We are using homogeneous boundary conditions for three of the sides. That is actually
no loss of generality.

Ugz +Uyy=0 (PDE)
Indeed, note that in order to solve u(z,0) = fi(x) we can solve the four Dirichlet problems:
u(z,b) = fa(z) (BC)
u(0,y) = f3(y)
u(a, y) = f4(y)
Ugg + Uyy =0 Ug g + Uyy =0 Ug g + Uyy =0 Ugg + Uyy =0
u(z,0) = fi(x) u(z,0) =0 u(z,0) =0 u(z,0) =0
u(xz,b) =0 u(z,b) = fao(x) u(xz,b) =0 u(z,b) =0
u(0,y) =0 u(0,y) =0 u(0,y) = f3(y) u(0,y) =0
u(a,y) = 0 u(a,y) = 0 u(a,y) = 0 u(a,y) = fa(y)

The sum of the four solutions then solves the Dirichlet problem we started with.
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Example 133. Find the unique solution u(z, y) to: u(z,0) = f(z)

Solution.

We proceed as before and look for solutions u(z, y) = X ()Y (y) (separation of variables).

Plugging into (PDE), we get X" (2)Y (y) + X ()Y (y), and so X'@) Yy

S ORI = const =: —\.
We thus have X"/ + XX =0and Y/ —)\Y =0.

From the last three (BC), we get X(0) =0, X (a) =0, Y (b)=0.

We ignore the first (inhomogeneous) condition for now.

So X solves X"+ XX =0, X(0)=0, X(a)=0.

From earlier, we know that, up to multiples, the only nonzero solutions of this eigenvalue problem are
X(z)= sin(%lm) corresponding to A = (%)2, n=1,23...

On the other hand, Y solves Y/ — A\Y =0, and hence Y (y) — AeVAY 4 Be— VY,

The condition Y (b) =0 implies that AeVAb L Be=VAb—( so that B=—Ae2VAP,

Hence, Y (y) = A(eﬁy — e*‘/x(y*%)).

™

Taken together, we have the solutions u,, (x,y) = sin(%nw) (eTy — 67%(747%)) solving (PDE)+(BC),
with the exception of u(z,0)= f(x).

We wish to combine these in such a way that u(x,0) = f(z) holds as well.

At y=0, un(z,0)= sin(%x)(l — e2mmb/a) Al of these are 2a-periodic.

Hence, we extend f(x), which is only given on (0, a), to an odd 2a-periodic function (its Fourier sine
series!). By making it odd, its Fourier series will only involve sine terms: f(z) =3 "7 b, sin(%ﬂ z).
Note that

a a

bn:l ‘ f(m)sin(mm: )dm:%/af(m)sin(nfzm)dx,
—a 0

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x)
on its original interval of definition.

Consequently, (PDE)+(BC) is solved by

[ee] [ee]

b b . (TN I Ty —2b
W) = 32 T el ) = 3t (G e ) (7 e ),
n=1 n=1
where
b, =2 / f(@)sin( T2 da.
afo a
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Ugg + Uy, =0 (PDE)
Example 134. Find the unique solution u(z,y) to:  %(#,0) =1
u(x,2) =0 (BC)
u(0,y) =0
u(l,y) =

Solution. This is the special case of the previous example with a =1, b=2 and
f(x)=1 for x € (0,1).
From Example 111, we know that f(x) has the Fourier sine series

[ee]

4 .
flx)= E — sin(nmz), x€(0,1).
n=1
n odd
Hence,
[e @]

4 1 o
(e, y)= Y — o sin(mna) (€™ — e~ V),

n odd

Comment. The temperature at the center is u(%, 1) = 0.0549 (only the first

term of the infinite sum suffices for this estimate; the first three terms suffice for
9 digits of accuracy).

Ugz +1Uyy =0 (PDE)

Example 135. Find the unique solution u(zx, y) to: u(x,0) =0
u(z,2) =3 (BC)

u(0,y) =0

Solution. Instead of starting from scratch (homework exercise!), let us reuse our computations:
Let v(z, y) =u(x,2 —y). Then vy + vyy =0, v(z,0)=3, v(z,2)=0, v(0,y) =0, v(1,y) =0.
Hence, it follows from the previous example that

o0
4 1 . _ _4
v@,y) =3 Y - rsin(ma) (e — e ™),
n=1
n odd
Consequently,
'U,(-’Z', y) :'U(JZ, 2— y) =3 Z —nmsin(ﬂ'nm)(eﬂ'n(Z—y) _ ewn(2+y)).
0 —e
n=1

n odd

Example 136. Find the unique solution u(zx, y) to:

Upz + Uyy = 0
u(z,0)=2, wu(x,2)=3
u(0,y)=0, wu(l,y)=0

Solution. Note that u(z, y) is a combination of the solutions to the previous two
examples!

[ee]

Z 4 sin(mnx n (o — (2 o
U(.’Z’,y): %%[2(6 Y_e (y 4))—|—3(e (2 y)_e (2+y))]
n=1
n odd
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