
Notes for Lecture 16 Tue, 10/20/2020

Review. Theorem 88: If x0 is an ordinary point of a linear IVP, then it is guaranteed to have a
power series solution y(x)=

P
n=0
1 an(x−x0)n.

Moreover, its radius of convergence is at least the distance between x0 and the closest singular point.

Example 92. Find a minimum value for the radius of convergence of a power series solution to
(x2+4)y 00− 3xy 0+ 1

x+1
y=0 at x=2.

Solution. The singular points are x=�2i;−1. Hence, x=2 is an ordinary point of the DE and the distance to the
nearest singular point is j2−2ij= 22+22

p
= 8
p

(the distances are j2− (−1)j=3, j2−2ij= j2− (−2i)j= 8
p

).

By Theorem 88, the DE has power series solutions about x=2 with radius of convergence at least 8
p

.

Example 93. (caution!) Theorem 88 only holds for linear DEs! For nonlinear DEs, it is very hard
to predict whether there is a power series solution and what its radius of convergence is.
Consider, for instance, the nonlinear DE y 0+2xy2=0.
Its coefficients have no singularities.

A solution to this DE is y(x)= 1

1+ x2
=

X
n=0

1
(−1)nx2n (check that!), which has radius of convergence 1.

On the other hand. y(x) also solves the linear DE (1+x2)y 0+2xy=0. Note how the DE has singular points
for x=�i. This allows us to predict that y(x) must have a power series with radius of convergence at least 1.

Example 94. (Bessel functions) Consider the DE x2y 00 + xy 0 + x2y = 0. Derive a recursive
description of a power series solutions y(x) at x=0.
Caution! Note that x= 0 is a singular point (the only) of the DE. Theorem 88 therefore does not guarantee
a basis of power series solutions. [However, x= 0 is what is called a regular singular point; for these, we are
guaranteed one power series solution, as well as additional solutions expressed using logarithms and power series.]

Comment. We could divide the DE by x (but that wouldn't really change the computations below). The reason
for not dividing that x is that this DE is the special case �=0 of the Bessel equation x2y 00+xy 0+(x2−�2)y=
0 (for which no such dividing is possible).

Solution. (plug in power series) Let us spell out power series for x2y;xy0; x2y 00 starting with y(x)=
X
n=0

1
anx

n:

x2y(x)=
X
n=0

1
anx

n+2=
X
n=2

1
an−2x

n

xy 0(x)=
X
n=1

1
nanx

n (because y0(x)=
X
n=1

1
nanx

n−1)

x2y 00(x)=
X
n=2

1
n(n− 1)anxn (because y 00(x)=

X
n=2

1
n(n− 1)anxn−2)

Hence, the DE becomes
X
n=2

1
n(n− 1)anxn+

X
n=1

1
nanxn+

X
n=2

1
an−2xn=0. We compare coefficients of xn:

� n=1: a1=0

� n> 2: n(n− 1)an+nan+ an−2=0, which simplifies to n2an=−an−2.
It follows that a2n=

(−1)n
4nn!2

a0 and a2n+1=0.

Observation. The fact that we found a1 = 0 reflects the fact that we cannot represent the general solution
through power series alone.

Comment. If a0=1, the function we found is a Bessel function and denoted as J0(x) =
X
n=0

1
(−1)n
n!2

�
x
2

�
2n
.

The more general Bessel functions J�(x) are solutions to the DE x2y 00+ xy 0+ (x2−�2)y=0.
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Example 95. (caution!) Consider the linear DE x2y 0= y−x. Does it have a convergent power
series solution at x=0?
Important note. The DE x2y 0= y−x has the singular point x=0. Hence, Theorem 88 does not apply.

Solution. Let us look for a power series solution y(x)=
X
n=0

1
anx

n.

x2y 0(x)=x2
X
n=1

1
nanx

n−1=
X
n=1

1
nanx

n+1=
X
n=2

1
(n− 1)an−1xn

Hence, x2y 0= y−x becomes
X
n=2

1
(n− 1)an−1xn=

X
n=0

1
anxn− x. We compare coefficients of xn:

� n=0: a0=0.

� n=1: 0= a1− 1, so that a1=1.

� n> 2: (n− 1)an−1= an, from which it follows that an=(n− 1)an−1=(n− 1)(n− 2)an−2= ���=
(n− 1)!a1=(n− 1)!.

Hence the DE has the �formal� power series solution y(x)=
X
n=1

1
(n− 1)!xn.

However, that series is divergent for all x=/ 0; that is, the radius of convergence is 0.

Inverses of power series

Example 96. (extra) For each of the following compute the first few terms of the power series.

(a) (a0+ a1x+ a2x2+ :::)(b0+ b1x+ b2x2:::)

(b)
1

a0+ a1x+ a2x2+ :::

(c)
1

1+ x+
1

2
x2+

1

6
x3+ :::

Solution.

(a) a0b0+ (a0b1+ a1b0)x+(a0b2+ a1b1+ a2b0)x2+O(x3)

(b) The answer is b0+ b1x+ ::: with the property that (a0+ a1x+ a2x2+ :::)(b0+ b1x+ b2x2:::)= 1.
By the first part, and comparing coefficients, a0b0=1, a0b1+ a1b0=0, a0b2+ a1b1+ a2b0=0, :::

Hence, b0=
1

a0
, b1=− 1

a0
(a1b0)=−a1

a0
2 , b2=−

1

a0
(a1b1+ a2b0)=

a1
2

a0
3 −

a2

a0
2 .

(c)
1

1+x+
1

2
x2+

1

6
x3+ :::

=1−x+ 1
2
x2− 1

6
x3+ :::

Comment. This reflects 1

ex
= e−x.
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Likewise, we could compute the first few terms of the power series of, say,
1

1−x−x2 .

However, it turns out that we can describe all terms in that power series:

Example 97. Derive a recursive description of the power series for y(x)=
1

1− x−x2 .

Solution. Write y(x)=
X
n=0

1
anx

n. Then

1= (1−x−x2)
X
n=0

1
anx

n =
X
n=0

1
anx

n−
X
n=0

1
anx

n+1−
X
n=0

1
anx

n+2

=
X
n=0

1
anxn−

X
n=1

1
an−1xn−

X
n=2

1
an−2xn:

We compare coefficients of xn:

� n=0: 1= a0.

� n=1: 0= a1− a0, so that a1= a0=1.

� n> 2: 0= an− an−1− an−2 or, equivalently, an= an−1+ an−2.

This is the recursive description of the Fibonacci numbers Fn! In particular an=Fn.

The first few terms. 1

1−x−x2 =1+x+2x2+3x3+5x4+8x5+ 13x6+ :::

Comment. The function y(x) is said to be a generating function for the Fibonacci numbers.
Challenge. Can you rederive Binet's formula from partial fractions and the geometric series?
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Notes for Lecture 17 Thu, 10/22/2020

Power series of familiar functions

(Unless we specify otherwise, power series are meant to be about x=0.)

Example 98. The hyperbolic cosine cosh(x) is defined to be the even part of ex. In other words,
cosh(x)= 1

2
(ex+ e−x). Determine its power series.

Solution. It follows from ex=
X
n=0

1
xn

n!
that cosh(x) =

X
n=0

1
x2n

(2n)!
.

Comment. Note that cosh(ix)= cos(x) (because cos(x)= 1

2
(eix+ e−ix)).

Comment. The hyperbolic sine sinh(x) is similarly defined to be the odd part of ex.

Example 99. (geometric series) Determine y(x)=
X
n=0

1

xn.

Solution. Note that xy= y− 1. Hence, y= 1
1− x

.

Comment. The radius of convergence of this series is 1. This is easy to see directly. But note that it also follows
from Theorem 88 since y(x) solves the �differential� (inhomogeneous) equation (1−x)y=1, for which the only
singular point is x=1.

Example 100. Determine a power series for
1

1+ x2
.

Solution. Replace x with −x2 in 1
1−x =

X
n=0

1
xn to get

1

1+ x2
=

X
n=0

1
(−1)nx2n.

Example 101. (extra) Determine a power series for ln(x) around x=1.

Solution. This is equivalent to finding a power series for ln(x+1) around x=0 (see the final step).

Observe that ln(x+1)=

Z
dx
1+x

+C and that
1

1+x
=

X
n=0

1
(−1)nxn.

Integrating, ln(x+1)=
X
n=0

1
(−1)nx

n+1

n+1
+C. Since ln(1)=0, we conclude that C=0.

Finally, ln(x+1)=
X
n=0

1
(−1)nx

n+1

n+1
is equivalent to ln(x)=

X
n=0

1
(−1)n
n+1

(x− 1)n+1.

Comment. Choosing x=2 in ln(x)=
X
n=0

1
(−1)n
n+1

(x−1)n+1 results in ln(2)=
X
n=0

1
(−1)n
n+1

=1− 1
2
+
1
3
− 1
4
+ :::.

The latter is the alternating harmonic sum.
Can you see from here why the harmonic sum 1+

1

2
+
1

3
+
1

4
+ ::: diverges?

Example 102. Determine a power series for arctan(x).

Solution. Recall that arctan(x) =
Z

dx

1+x2
+C. Hence, we need to integrate

1

1+x2
=

X
n=0

1
(−1)nx2n.

It follows that arctan(x)=
X
n=0

1
(−1)nx

2n+1

2n+1
+C. Since arctan(0)=0, we conclude that C =0.
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Example 103. (error function) Determine a power series for erf(x)=
2

�
p

Z
0

x

e−t
2
dt.

Solution. It follows from ex=
X
n=0

1
xn

n!
that e−t

2

=
X
n=0

1
(−1)nt2n

n!
.

Integrating, we obtain erf(x)= 2

�
p

Z
0

x

e−t
2

dt=
2

�
p

X
n=0

1
(−1)nx2n+1
n!(2n+1)

.

Example 104. Determine the first several terms (up to x5) in the power series of tan(x).
Solution. Observe that y(x)= tan(x) is the unique solution to the IVP y 0=1+ y2, y(0)=0.
We can therefore proceed to determine the first few power series coefficients as we did earlier.
That is, we plug y= a0+ a1x+ a2x

2+ a3x
3+ a4x

4+ ::: into the DE. Note that y(0)=0 means a0=0.
y 0= a1+2a2x+3a3x

2+4a4x
3+5a5x

4+ :::

1+ y2=1+(a1x+ a2x
2+ a3x

3+ :::)2=1+ a1
2x2+ (2a1a2)x

3+ (2a1a3+ a2
2)x4+ :::

Comparing coefficients, we find: a1=1, 2a2=0, 3a3= a1
2, 4a4=2a1a2, 5a5=2a1a3+ a2

2.

Solving for a2; a3; :::, we conclude that tan(x)=x+
x3

3
+
2x5

15
+
17x7

315
+ :::

Comment. The fact that tan(x) is an odd function translates into an= 0 when n is even. If we had realized
that at the beginning, our computation would have been simplified.

Advanced comment. The full power series is tan(x) =
X
n=1

1
(−1)n−122n(22n− 1)B2n

(2n)!
x2n−1.

Here, the numbers B2n are (rather mysterious) rational numbers known as Bernoulli numbers.
The radius of convergence is �/2. Note that this is not at all obvious from the DE y0=1+ y2. This illustrates
the fact that nonlinear DEs are much more complicated than linear ones. (There's no analog of Theorem 88.)

Fourier series
The following amazing fact is saying that any 2�-periodic function can be written as a sum of
cosines and sines.
Advertisement. In Linear Algebra II, we will see the following natural way to look at Fourier series: the functions
1, cos(t), sin(t), cos(2t), sin(2t), ::: are orthogonal to each other (for that to make sense, we need to think of
functions as vectors and introduce a natural inner product). In fact, they form an orthogonal basis for the space
of piecewise smooth functions. In that setting, the formulas for the coefficients an and bn are nothing but the
usual projection formulas for orthogonal projection onto a single vector.

Theorem 105. Every� 2�-periodic function f can be written as a Fourier series

f(t)=
a0
2
+

X
n=1

1

(ancos(nt)+ bnsin(nt)):

Technical detail�: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity of f , then the Fourier series converges to the average f(t−)+ f(t+)

2
.

The Fourier coefficients an, bn are unique and can be computed as

an=
1
�

Z
−�

�

f(t)cos(nt)dt; bn=
1
�

Z
−�

�

f(t)sin(nt)dt:

Comment. Another common way to write Fourier series is f(t)=
X

n=−1

1
cn e

int.

These two ways are equivalent; we can convert between them using Euler's identity eint= cos(nt)+ i sin(nt).
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Notes for Lecture 18 Tue, 10/27/2020

Definition 106. Let L> 0. f(t) is L-periodic if f(t+L)= f(t) for all t. The smallest such L
is called the (fundamental) period of f .

Example 107. The fundamental period of cos(nt) is 2�/n.

Example 108. The trigonometric functions cos(nt) and sin(nt) are 2�-periodic for any integer n.
And so are their linear combinations. (In other words, 2�-periodic functions form a vector space.)

Example 109. Find the Fourier series of the 2�-periodic function f(t) defined by

f(t)=

8>><>>:
−1; for t2 (−�; 0),
+1; for t2 (0; �);
0; for t=−�; 0; �:

−π π 2π 3π 4π

Solution. We compute a0=
1
�

Z
−�

�

f(t)dt=0, as well as

an =
1
�

Z
−�

�

f(t)cos(nt)dt= 1
�

�
−
Z
−�

0

cos(nt)dt+
Z
0

�

cos(nt)dt
�
=0

bn =
1
�

Z
−�

�

f(t)sin(nt)dt= 1
�

�
−
Z
−�

0

sin(nt)dt+
Z
0

�

sin(nt)dt
�
=

2
�n

[1− cos(n�)]

=
2
�n

[1− (−1)n] =
(

4

�n
if n is odd

0 if n is even
:

In conclusion, f(t) =
X
n=1
n odd

1
4
�n

sin(nt) = 4
�

�
sin(t)+ 1

3
sin(3t)+ 1

5
sin(5t)+ :::

�
.

−π π 2π 3π 4π

Observation. The coefficients an are zero for all n if and only if f(t) is odd.
Comment. The value of f(t) for t=−�; 0; � is irrelevant to the computation of the Fourier series. They are
chosen so that f(t) is equal to the Fourier series for all t (recall that, at a jump discontinuity t, the Fourier series

converges to the average f(t−)+ f(t+)

2
).

Comment. Plot the (sum of the) first few terms of the Fourier series. What do you observe? The �overshooting�
is known as the Gibbs phenomenon: https://en.wikipedia.org/wiki/Gibbs_phenomenon
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Comment. Set t= �

2
in the Fourier series we just computed, to get Leibniz' series �= 4[1− 1

3
+
1

5
− 1

7
+ :::].

For such an alternating series, the error made by stopping at the term 1/n is on the order of 1/n. To compute
the 768 digits of � to get to the Feynman point (3.14159265:::721134999999:::), we would (roughly) need
1/n<10−768, or n>10768. That's a lot of terms! (Roger Penrose, for instance, estimates that there are about
1080 atoms in the observable universe.)
Remark. Convergence of such series is not obvious! Recall, for instance, that the (odd part of) the harmonic
series 1+ 1

3
+
1

5
+
1

7
+ ��� diverges.

There is nothing special about 2�-periodic functions considered last time (except that cos(t) and
sin(t) have fundamental period 2�). Note that cos(�t/L) and sin(�t/L) have period 2L.

If f(t) has period 2L, then f~(x) := f
�
L

�
t
�
has period 2�. Therefore Theorem 105 implies the following:

Theorem 110. Every� 2L-periodic function f can be written as a Fourier series

f(t)=
a0
2
+

X
n=1

1 �
ancos

�
n�t
L

�
+ bnsin

�
n�t
L

��
:

Technical detail�: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity, then the Fourier series converges to the average f(t−)+ f(t+)

2
.

The Fourier coefficients an, bn are unique and can be computed as

an=
1
L

Z
−L

L

f(t)cos
� n�t

L

�
dt; bn=

1
L

Z
−L

L

f(t)sin
� n�t

L

�
dt:

Example 111. Find the Fourier series of the 2-periodic function g(t)=

8>><>>:
−1 for t2 (−1; 0)
+1 for t2 (0; 1)
0 for t=−1; 0; 1

.

Solution. Instead of computing from scratch, we can use the fact that g(t) = f(�t), with f as in the previous

example, to get g(t)= f(�t) =
X
n=1
n odd

1
4
�n

sin(n�t).

Theorem 112. If f(t) is continuous and f(t)= a0
2
+
P

n=1
1 (

ancos
( n�t

L

�
+ bnsin

( n�t
L

��
, then�

f 0(t)=
P

n=1
1 ( n�

L
bncos

( n�t
L

�
− n�

L
ansin

( n�t
L

��
(i.e., we can differentiate termwise).

Technical detail�: f 0 needs to be, e.g., piecewise smooth (so that it has a Fourier series itself).

Example 113. Let h(t) be the 2-periodic function with h(t)=
�
−t for t2 (−1; 0)
+t for t2 (0; 1) . Compute the

Fourier series of h(t).
Solution. We could just use the integral formulas to compute an and bn. Since h(t) is even (plot it!), we will
find that bn=0. Computing an is left as an exercise.

Solution. Note that h(t) is continuous and h0(t) = g(t), with g(t) as in Example 111. Hence, we can apply
Theorem 112 to conclude

h0(t)= g(t)=
X
n=1
n odd

1
4
�n

sin(n�t) =) h(t)=
X
n=1
n odd

1
4
�n

�
− 1
�n

�
cos(n�t)+C;

where C=
a0
2
=
1
2

Z
−1

1

h(t)dt=
1
2
is the constant of integration. Thus, h(t)=

1
2
−

X
n=1
n odd

1
4

�2n2
cos(n�t).

Armin Straub
straub@southalabama.edu

38



Remark. Note that t=0 in the last Fourier series, gives us �2

8
=
1

1
+

1

32
+

1

52
+ :::. As an exercise, you can try

to find from here the fact that
P

n>1
1

n2
=
�2

6
. Similarly, we can use Fourier series to find that

P
n>1

1

n4
=
�4

90
.

Just for fun. These are the values �(2) and �(4) of the Riemann zeta function �(s). No such evaluations are
known for �(3); �(5); ::: and we don't even know (for sure) whether these are rational numbers. Nobody believes
these to be rational numbers, but it was only in 1978 that Apéry proved that �(3) is not a rational number.

Example 114. (caution!) The function g(t), from Example 111, is not continuous. For all values,
except the discontinuities, we have g 0(t)=0. On the other hand, differentiating the Fourier series
termwise, results in 4

P
n odd cos(n�t), which diverges for most values of t (that's easy to check

for t=0). This illustrates that we cannot apply Theorem 112 because of the missing continuity.

[The issues we are facing here can be fixed by generalizing the notion of function to distributions. (Maybe you
have heard of the Dirac delta �function�.)]

Fourier series and linear differential equations

In the following examples, we consider inhomogeneous linear DEs p(D)y=F (t) where F (t) is a
periodic function that can be expressed as a Fourier series. We first review the notion of resonance
(and how to predict it) and then solve such DEs.

Context. Recall that the inhomogeneous DE my 00+ ky = F (t) describes, for instance, the motion of a mass
m on a spring with spring constant k under the influence of an external force F (t).

Example 115. Consider the linear DE my 00+ ky = cos(!t). For which (external) frequencies
!> 0 does resonance occur?
Solution. The roots of p(D) =mD2+ k are �i k/m

p
. Correspondingly, the solutions of the homogeneous

equationmy 00+ky=0 are combinations of cos(!0t) and sin(!0t), where !0= k/m
p

(!0 is called the natural
frequency of the DE). Resonance occurs in the case !=!0 (overlapping roots).
Review. If ! =/ !0, then there is particular solution of the form yp(t) = A cos(!t) + B sin(!t) (for specific
values of A and B). The general solution is y(t) =A cos(!t) +B sin(!t) +C1cos(!0t) +C2sin(!0t), which
is a bounded function of t. In contrast, if ! = !0, then general solution is y(t) = (C1 + At)cos(!0t) +
(C2+Bt)sin(!0t) and this function is unbounded.

Comment. The inhomogeneous equation my 00+ky=F (t) describes the motion of a mass m on a spring with
spring constant k under the influence of an external force F (t).

Example 116. A mass-spring system is described by the DE 2y 00+ 32y=
X
n=1

1
cos(n!t)
n2+1

.

For which ! does resonance occur?
Solution. The roots of p(D) = 2D2 + 32 are �4i, so that that the natural frequency is 4. Resonance
therefore occurs if 4 equals n! for some n 2 f1; 2; 3; :::g. Equivalently, resonance occurs if != 4/n for some
n2f1; 2; 3; :::g.

Example 117. A mass-spring system is described by the DE my 00+ y=
X
n=1

1
1
n2

sin
�
nt
3

�
.

For which m does resonance occur?
Solution. The roots of p(D)=mD2+1 are �i/ m

p
, so that that the natural frequency is 1/ m

p
. Resonance

therefore occurs if 1/ m
p

=n/3 for some n2f1;2;3; :::g. Equivalently, resonance occurs if m=9/n2 for some
n2f1; 2; 3; :::g.
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Though it requires some effort, we already know how to solve p(D)y = F (t) for periodic forces
F (t), once we have a Fourier series for F (t). The same approach works for linear equations of
higher order, or even systems of equations.

Example 118. Find a particular solution of 2y 00 + 32y = F (t), with F (t) =
�

10 if t2 (0; 1)
−10 if t2 (1; 2) ,

extended 2-periodically.
Solution.

� From earlier, we already know F (t)= 10
P

n odd
4

�n
sin(�nt).

� We next solve the equation 2y 00 + 32y = sin(�nt) for n = 1; 3; 5; :::. First, we note that the external
frequency is �n, which is never equal to the natural frequency !0 = 4. Hence, there exists a particular
solution of the form yp(t)=A cos(�nt)+B sin(�nt). To determine the coefficients A;B, we plug into
the DE. Noting that yp

00=−�2n2 yp (why?!), we get

2yp
00+ 32yp=(32− 2�2n2)(A cos(�nt) +B sin(�nt))=

!
sin(�nt):

We conclude A=0 and B=
1

32− 2�2n2
, so that yp(t)=

sin(�nt)
32− 2�2n2

.

� We combine the particular solutions found in the previous step, to see that

2y 00+ 32y= 10
X
n=1
n odd

1
4
�n

sin(�nt) is solved by yp= 10
X
n=1
n odd

1
4
�n

sin(�nt)
32− 2�2n2 :

Example 119. Find a particular solution of 2y 00+32y=F (t), with F (t) the 2�-periodic function
such that F (t)= 10t for t2 (−�; �).
Solution.

� The Fourier series of F (t) is F (t)=
P

n=1
1 (−1)n+1 20

n
sin(nt). [Exercise!]

� We next solve the equation 2y 00+32y= sin(nt) for n=1;2;3; :::. Note, however, that resonance occurs
for n = 4, so we need to treat that case separately. If n =/ 4 then we find, as in the previous example,
that yp(t)=

sin(nt)
32− 2n2 . [Note how this fails for n=4!]

For 2y 00+ 32y= sin(4t), we begin with yp=At cos(4t) +Bt sin(4t). Then yp
0 = (A+4Bt)cos(4t) +

(B − 4At)sin(4t), and yp
00= (8B − 16At)cos(4t) + (−8A − 16Bt)sin(4t). Plugging into the DE, we

get 2yp
00+32yp=16B cos(4t)−16A sin(4t)=

!
sin(4t), and thusB=0, A=− 1

16 . So, yp=−
1

16 tcos(4t).

� We combine the particular solutions to get that our DE

2y 00+ 32y=−5sin(4t) +
X
n=1
n=/4

1
(−1)n+1 20

n
sin(nt)

is solved by

yp(t)=
5
16
t cos(4t)+

X
n=1
n=/ 4

1
(−1)n+1 20

n
sin(nt)
32− 2n2 :

As in the previous example, this solution cannot really be simplified. Make some plots to appreciate the
dominating character of the term resulting from resonance!
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Notes for Lecture 19 Thu, 10/29/2020

Fourier cosine series and Fourier sine series

Suppose we have a function f(t) which is defined on a finite interval [0; L]. Depending on the
kind of application, we can extend f(t) to a periodic function in three natural ways; in each case,
we can then compute a Fourier series for f(t) (which will agree with f(t) on [0; L]).
Comment. Here, we do not worry about the definition of f(t) at specific individual points like t=0 and t=L,
or at jump discontinuities. Recall that, at a discontinuity, a Fourier series takes the average value.

(a) We can extend f(t) to an L-periodic function.

In that case, we obtain the Fourier series f(t)=
a0
2
+

X
n=1

1 �
ancos

�
2�nt
L

�
+ bnsin

�
2�nt
L

��
.

(b) We can extend f(t) to an even 2L-periodic function.

In that case, we obtain the Fourier cosine series f(t)= a~0
2
+

X
n=1

1
a~ncos

�
�nt
L

�
.

(c) We can extend f(t) to an odd 2L-periodic function.

In that case, we obtain the Fourier sine series f(t)=
X
n=1

1
b~nsin

�
�nt
L

�
.

Example 120. Consider the function f(t)= 4− t2, defined for t2 [0; 2].

(a) Sketch the 2-periodic extension of f(t).

(b) Sketch the 4-periodic even extension of f(t).

(c) Sketch the 4-periodic odd extension of f(t).

Solution. The 2-periodic extension as well as the 4-periodic even extension:

-8 -6 -4 -2 0 2 4 6 8

2

4

-8 -6 -4 -2 0 2 4 6 8

2

4

The 4-periodic odd extension:

-8 -6 -4 -2 2 4 6 8

-4

-2

2

4
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Example 121. As in the previous example, consider the function f(t)=4− t2, defined for t2 [0;2].

(a) Let F (t) be the Fourier series of f(t) (meaning the 2-periodic extension of f(t)). Deter-
mine F (2), F

( 5
2

�
and F

(
−1

2

�
.

(b) Let G(t) be the Fourier cosine series of f(t). Determine G(2), G
( 5
2

�
and G

(
−1

2

�
.

(c) Let H(t) be the Fourier cosine series of f(t). Determine H(2), H
( 5
2

�
and H

(
−1

2

�
.

Solution.

(a) Note that the extension of f(t) has discontinuities at :::;−2;0;2;4; ::: (see plot in previous example) and
recall that the Fourier series takes average values at these discontinuities:
F (2)=

1

2
(F (2−)+F (2+))=

1

2
(0+4)=2

F
�
5

2

�
=F

�
5

2
− 2

�
= f

�
1

2

�
=

15
4

F
�
−1

2

�
=F

�
−1

2
+2

�
= f

�
3

2

�
=
7

4

(b) G(2)= f(2)=0 (see plot!)

[note that G(2+)=G(2+−4)=G(−2+)=G(2−) where we used that G is even in the last step; in fact,
we can show like this that the Fourier cosine series of a continuous function is always continuous]

G
�
5

2

�
=G

�
5

2
− 4

�
=G

�
−3

2

�
= f

�
3

2

�
=
7

4

G
�
−1

2

�
= f

�
1

2

�
=

15
4

(c) H(2)= 1

2
(f(2−)− f(2−))= 0 (see plot!)

[note that H(2+) =H(2+− 4)=H(−2+)=−H(2−) where we used that H is odd in the last step; in
fact, we can show like this that the Fourier sine series of a continuous function is always 0 at the jumps]

H
�
5

2

�
=H

�
5

2
− 4

�
=H

�
−3

2

�
=−f

�
3

2

�
=−7

4

H
�
−1

2

�
=−f

�
1

2

�
=−15

4

Boundary value problems

Example 122. The IVP (initial value problem) y 00+4y=0, y(0)=0, y 0(0)=0 has the unique
solution y(x)= 0.

Initial value problems are often used when the problem depends on time. Then, y(0) and y 0(0)
describe the initial configuration at t=0.

For problems which instead depend on spatial variables, such as position, it may be natural to
specify values at positions on the boundary (for instance, if y(x) describes the steady-state
temperature of a rod at position x, we might know the temperature at the two end points).

The next example illustrates that such a boundary value problem (BVP) may or may not have a
unique solution.
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Example 123. Verify the following claims.

(a) The BVP y 00+4y=0, y(0)=0, y(1)=0 has the unique solution y(x)= 0.

(b) The BVP y 00+�2y=0, y(0)=0, y(1)=0 is solved by y(x)=B sin(�x) for any value B.

Solution.

(a) We know that the general solution to the DE is y(x)=A cos(2x)+B sin(2x). The boundary conditions

imply y(0)=A=
!
0 and, using that A=0, y(1)=B sin(2)=

!
0 shows that B=0 as well.

(b) This time, the general solution to the DE is y(x) = A cos(�x) + B sin(�x). The boundary conditions

imply y(0)=A=
!
0 and, using that A=0, y(1)=B sin(�)=

!
0. This second condition is true for any B.

It is therefore natural to ask: for which � does the BVP y 00+ �y = 0, y(0) = 0, y(L) = 0 have
nonzero solutions? (We assume that L> 0.)

Such solutions are called eigenfunctions and � is the corresponding eigenvalue.
Remark. Compare that to our previous use of the term eigenvalue: given a matrix A, we asked: for which � does
Av − �v = 0 have nonzero solutions v? Such solutions were called eigenvectors and � was the corresponding
eigenvalue.

Example 124. Find all eigenfunctions and eigenvalues of y 00+�y=0, y(0)= 0, y(L)= 0.

Such a problem is called an eigenvalue problem.

Solution. The solutions of the DE look different in the cases �<0, �=0, �>0, so we consider them individually.

�=0. Then y(x)=Ax+B and y(0)= y(L)= 0 implies that y(x)= 0. No eigenfunction here.

�< 0. The roots of the characteristic polynomial are � −�
p

. Writing � = −�
p

, the general solution

therefore is y(x) = Ae�x + Be−�x. y(0) = A + B =
!
0 implies B = −A. Using that, we get

y(L)=A(e�L− e−�L)=
!
0. For eigenfunctions we need A=/ 0, so e�L= e−�L which implies �L=−�L.

This cannot happen since �=/ 0 and L=/ 0. Again, no eigenfunctions in this case.

�> 0. The roots of the characteristic polynomial are �i �
p

. Writing � = �
p

, the general solution thus

is y(x) =A cos(�x) + B sin(�x). y(0) =A =
!
0. Using that, y(L) = B sin(�L) =

!
0. Since B =/ 0 for

eigenfunctions, we need sin(�L)=0. This happens if �L=n� for n=1;2;3; ::: (since � and L are both
positive). Equivalently, �= n�

L
. Consequently, we find the eigenfunctions yn(x)= sinn�x

L
, n=1;2;3; :::,

with eigenvalue �=
( n�
L

�
2.

Example 125. Suppose that a rod of length L is compressed by a force P (with ends being pinned
[not clamped] down). We model the shape of the rod by a function y(x) on some interval [0; L].

The theory of elasticity predicts that, under certain simplifying assumptions, y should satisfy
EIy 00+Py=0, y(0)=0, y(L)= 0.

Here, EI is a constant modeling the inflexibility of the rod (E, known as Young's modulus, depends on the
material, and I depends on the shape of cross-sections (it is the area moment of inertia)).

In other words, y 00+�y=0, y(0)=0, y(L)= 0, with �= P

EI
.

The fact that there is no nonzero solution unless �=
( �n
L

�
2 for some n= 1; 2; 3; :::, means that buckling can

only occur if P =
( �n
L

�
2EI. In particular, no buckling occurs for forces less than �2EI

L2
. This is known as the

critical load (or Euler load) of the rod.
Comment. This is a very simplified model. In particular, it assumes that the deflections are small. (Technically,
the buckled rod in our model is longer than L; of course, that's not the case in practice.)
https://en.wikipedia.org/wiki/Euler%27s_critical_load
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Partial differential equations

The heat equation

We wish to describe one-dimensional heat flow.
Comment. If this sounds very specialized, it might help to know that the heat equation is also used, for instance,
in probability (Brownian motion), financial math (Black-Scholes), or chemical processes (diffusion equation).

Let u(x; t) describe the temperature at time t at position x.

If we model a heated rod of length L, then x2 [0; L].
Notation. u(x; t) depends on two variables. When taking derivatives, we will use the notations ut=

@

@t
u and

uxx=
@2

@x2
u for first and higher derivatives.

Experience tells us that heat flows from warmer to cooler areas and has an averaging effect.

Make a sketch of some temperature profile u(x; t) for fixed t.

As t increases, we expect maxima (where uxx < 0) of that profile to flatten out (which means
that ut<0); similarly, minima (where uxx>0) should go up (meaning that ut>0). The simplest
relationship between ut and uxx which conforms with our expectation is ut= kuxx, with k > 0.

(heat equation)

ut= kuxx

Note that the heat equation is a linear and homogeneous partial differential equation.
In particular, the principle of superposition holds: if u1 and u2 solve the heat equation, then so does c1u1+ c2u2.

Higher dimensions. In higher dimensions, the heat equation takes the form ut = k(uxx + uyy) or ut =
k(uxx+uyy+uzz). Note that �u=uxx+uyy+uzz is the Laplace operator you may know from Calculus III.

The Laplacian �u is also often written as �u=r2u. The operator r= (@/@x; @/@y) is pronounced �nabla�
(Greek for a certain harp) or �del� (Persian for heart), and r2 is short for the inner product r �r.

Example 126. Note that u(x; t)= ax+ b solves the heat equation.

Example 127. To get a feeling, let us find some other solutions to ut=uxx (for starters, k=1).

� For instance, u(x; t)= etex is a solution.
[Not a very interesting one for modeling heat flow because it increases exponentially in time.]

� ::: to be continued :::
Can you find further solutions?
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