
Notes for Lecture 9 Tue, 9/15/2020

Systems of recurrence equations

Example 55. Write the (second-order) RE an+2=an+1+2an, with a0=1, a1=8, as a system
of (first-order) recurrences.
Solution. Write bn= an+1.

Then, an+2= an+1+2an translates into the first-order system
�
an+1= bn
bn+1=2an+ bn

.

Let an=
�
an
bn

�
. Then, in matrix form, the RE is an+1=

�
0 1
2 1

�
an, with a0=

�
1
8

�
.

Comment. Consequently, an=
�
0 1
2 1

�n
a0=

�
0 1
2 1

�n� 1
8

�
. Solving (systems of) REs is equivalent to computing

powers of matrices!

Example 56. Determine the general solution to an+1=
�
0 1
2 1

�
an.

Solution. In the previous example, we obtained this system from the RE an+2= an+1+2an, which we know
(do it!) has solutions an=2n and an=(−1)n (which combine to the general solution an=C1 �2n+C2 � (−1)n).

Correspondingly, an+1=
�
0 1
2 1

�
an has solutions an=

"
2n

2n+1

#
and an=

"
(−1)n
(−1)n+1

#
.

These combine to the general solution an=C1

"
2n

2n+1

#
+C2

"
(−1)n
(−1)n+1

#
=

"
2n (−1)n
2n+1 (−1)n+1

#�
C1

C2

�
.

We call �n=
"

2n (−1)n
2n+1 (−1)n+1

#
a fundamental matrix (solution). The general solution is �nc with c=

�
C1

C2

�
.

Observations.

(a) The columns of �n are (independent) solutions of the system.

(b) �n solves the RE itself: �n+1=
�
0 1
2 1

�
�n.

[Spell this out in this example! That �n solves the RE follows from the definition of matrix multiplication.]

(c) It follows that �n=
�
0 1
2 1

�n
�0. Equivalently, �n�0

−1=
�
0 1
2 1

�n
. (See next example!)

Matrix powers Mn can be computed by diagonalizing the matrix M (if you have taken linear
algebra classes, you might have seen this).
We just saw that being able to compute matrix powers is equivalent to solving systems of recurrences. In the
next example, we use this connection to compute some matrix powers.

(a way to compute powers of a matrix M)
Compute a fundamental matrix solution �n of an+1=Man.

Then Mn=�n�0
−1.

Example 57. Compute Mn for M =
�
0 1
2 1

�
.

Solution. We already observed that�n=
"

2n (−1)n
2n+1 (−1)n+1

#
is a fundamental matrix solution�n of an+1=Man.

We have �0
−1=

�
1 1
2 −1

�−1
=
1

3

�
1 1
2 −1

�
. Hence,

Mn=�n�0
−1=

"
2n (−1)n
2n+1 (−1)n+1

#
1
3

�
1 1
2 −1

�
=
1
3

"
2n+2(−1)n 2n− (−1)n

2n+1+2(−1)n+1 2n+1− (−1)n+1

#
:

Note. Mn is a fundamental matrix solution of an+1=Man itself.
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Example 58. Let M =
�
8 −10
5 −7

�
.

(a) Determine the general solution to an+1=Man.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

Solution.

(a) Let us look for solutions of the form an= v�
n (where v=

�
v1
v2

�
). Note that an+1=v�n+1= �an.

Plugging into an+1=Man we find v�n+1=Mv�n.
Cancelling �n (just a number!), this simplifies to �v=Mv.
In other words, an=v�n is a solution if and only if v is a �-eigenvector of M .

We computed earlier that
�
2
1

�
is an eigenvector for �=3, and

�
1
1

�
is an eigenvector for �=−2.

Hence, the general solution is C1
�
2
1

�
3n+C2

�
1
1

�
(−2)n.

(b) The corresponding fundamental matrix solution is �n=
�
2 � 3n (−2)n
3n (−2)n

�
.

[Note that our general solution is precisely �n
�
C1

C2

�
.]

(c) Note that �0=
�
2 1
1 1

�
, so that �0

−1=
�

1 −1
−1 2

�
. It follows that

Mn=�n�0
−1=

�
2 � 3n (−2)n
3n (−2)n

��
1 −1
−1 2

�
=

�
2 � 3n− (−2)n −2 � 3n+2(−2)n
3n− (−2)n −3n+2(−2)n

�
:

To solve an+1=Man, determine the eigenvectors of M .

� Each �-eigenvector v provides a solution: an=v�n

� If there are enough eigenvectors, these combine to the general solution.

Comment. If there are not enough eigenvectors, then we know what to do as well (at least in principle): instead of
looking only for solutions of the type an=v�n, we also need to look for solutions of the type an=(vn+w)�n.
Note that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.
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Notes for Lecture 10 Tue, 9/22/2020

Example 59. Write an+3− 4an+2+ an+1+6an=0 as a system of (first-order) recurrences.

Solution. Write bn= an+1 and cn= an+2.

Then, an+3− 4an+2+ an+1+6an=0 translates into the first-order system

8<:an+1= bn
bn+1= cn
cn+1=−6an− bn+4cn

.

Let an=

24 an
bn
cn

35. Then, in matrix form, the RE is an+1=

24 0 1 0
0 0 1
−6 −1 4

35an.
Review.

� Consequently, an=Mna0, where M is the matrix above.

� In general, we can solve an+1=Man by finding the eigenvectors of M :
An �-eigenvector v provides the solution an= v�n.

� Here, because we started with a single (third-order) equation, we can avoid computing eigenvectors:
an=C1 � 3n+C2 � 2n+C3 � (−1)n is the general solution to the initial RE. (Why?! Do it!)

Correspondingly, a fundamental matrix solution of the system is �n=

24 3n 2n (−1)n
3 � 3n 2 � 2n −(−1)n
9 � 3n 4 � 2n (−1)n

35.
Note. This tells us that

24 1
3
9

35 is a 3-eigenvector,
24 1
2
4

35a 2-eigenvector, and
24 1
−1
1

35a−1-eigenvector of M .

� Since �n+1=M�n, we have �n=Mn�0 so that Mn=�n�0
−1. This allows us to compute that:

Mn=
1
12

24 −6 � 3n+ 12 � 2n+6(−1)n −3 � 3n+8 � 2n− 5(−1)n 3 � 3n− 4 � 2n+(−1)n
−18 � 3n+ 24 � 2n− 6(−1)n ::: :::
−54 � 3n+ 48 � 2n+6(−1)n ::: :::

35

(systems of REs) The unique solution to an+1=Man, a0= c is an=Mnc.

Note that Mn is the fundamental matrix solution to an+1=Man with a0= I (the identity matrix).

Systems of differential equations

Example 60. Write the (second-order) differential equation y 00= 2y 0+ y as a system of (first-
order) differential equations.

Solution. Write y1= y and y2= y 0. Then y 00=2y0+ y becomes y2
0 =2y2+ y1.

Therefore, y 00=2y 0+ y translates into the first-order system
�
y1
0 = y2
y2
0 = y1+2y2

.

In matrix form, this is y0=
�
0 1
1 2

�
y.

Comment. Hence, we care about systems of differential equations, even if we work with just one function.

Example 61. Write the (third-order) differential equation y 000 = 3y 00 − 2y 0 + y as a system of
(first-order) differential equations.

Solution. Write y1= y, y2= y 0 and y3= y 00.

Then, y 000=3y 00− 2y 0+ y translates into the first-order system

8<:y1
0 = y2
y2
0 = y3
y3
0 = y1− 2y2+3y3

.

In matrix form, this is y0=

24 0 1 0
0 0 1
1 −2 3

35y.
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Example 62. Consider the following system of (second-order) initial value problems:

y1
00=2y1

0 − 3y20 +7y2
y2
00=4y1

0 + y2
0 − 5y1

y1(0)=2; y1
0(0)= 3; y2(0)=−1; y20(0)=1

Write it as a first-order initial value problem in the form y 0=My, y(0)= y0.
Solution. Introduce y3= y1

0 and y4= y2
0. Then, the given system translates into

y 0=

266664
0 0 1 0
0 0 0 1
0 7 2 −3
−5 0 4 1

377775y; y(0)=

266664
2
−1
3
1

377775:
(systems of DEs) The unique solution to y 0=My, y(0)= c is y(x)= eMxc.

Here, eMx is the fundamental matrix solution to y0=My, y(0)= I (with I the identity matrix).

Important. We are defining the matrix exponential eMx as the solution to an IVP. This is equivalent to how
one can define the ordinary exponential ex as the solution to y 0= y, y(0)=1.
[In a little bit, we will also discuss how to think about the matrix exponential eMx using power series.]

(a way to compute the matrix exponential eMx)
Compute a fundamental matrix solution �(x) of y 0=My.

Then eMx=�(x)�(0)−1.

Compare this to our method of computing matrix powers Mn.
Proof. If �(x) is a fundamental matrix solution, then so is 	(x)=�(x)C for any constant matrix C. (Why?!)
Therefore, 	(x)=�(x)�(0)−1 is a fundamental matrix solution with 	(0)=�(0)�(0)−1= I.

But eMx is defined to be the unique such solution, so that 	(x) = eMx.

Observe how the next example proceeds along the same lines as Example 58.

Example 63. Let M =
�
8 −10
5 −7

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

Solution.

(a) Let us look for solutions of the form y(x)= ve�x (where c=
�
c1
c2

�
). Note that y 0=�ve�x=�y.

Plugging into y 0=My we find �y=My.

In other words, y(x)=ve�x is a solution if and only if v is a �-eigenvector of M .

We computed earlier that
�
2
1

�
is an eigenvector for �=3, and

�
1
1

�
is an eigenvector for �=−2.

Hence, the general solution is C1
�
2
1

�
e3x+C2

�
1
1

�
e−2x.

(b) The corresponding fundamental matrix solution is �=
"
2 � e3x e−2x

e3x e−2x

#
.

[Note that our general solution is precisely �
�
C1

C2

�
.]

(c) Note that �(0)=
�
2 1
1 1

�
, so that �(0)−1=

�
1 −1
−1 2

�
. It follows that

eMx=�(x)�(0)−1=

"
2 � e3x e−2x

e3x e−2x

#�
1 −1
−1 2

�
=

"
2 � e3x− e−2x −2 � e3x+2e−2x

e3x− e−2x −e3x+2e−2x

#
:
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Notes for Lecture 11 Thu, 9/24/2020

Example 64. Let p(D) =Dm+ cm−1Dm−1+ :::+ c1D + c0. Write the DE p(D)y = 0 as a
system of (first-order) differential equations.
Solution. Write yk=Dky for k=0; 1; :::;m− 1.

Then, p(D)y=0 translates into the first-order system

8>>>><>>>>:
y0
0 = y1
y1
0 = y2���
ym−1
0 =−cm−1ym−1− :::− c1y1− c0y0

.

In matrix form, this is y0=

2666666664
0 1 0 ��� 0
0 0 1 ��� 0
��� ��� ��� ��� ���
0 0 0 ��� 1
−c0 −c1 ��� ��� −cm−1

3777777775y.
Comment. This is called the companion matrix of the polynomial p(D). Can you see why the characteristic
polynomial of the matrix must be (up to possibly a sign) equal to p(D)?

As expected, this works exactly the same way for recurrence equations:

Example 65. (extra) Let p(N)=Nm+ cm−1N
m−1+ :::+ c1N + c0. Write the RE p(N )an=0

as a system of (first-order) recurrences.

Solution. Write an
(k)

=Nkan= an+k for k=0; 1; :::;m− 1.

Then, p(N)an=0 translates into the first-order system

8>>>>>>>><>>>>>>>>:
an+1
(0)

= an
(1)

an+1
(1)

= an
(2)

���
an+1
(m−1)

=−cm−1an
(m−1)− :::− c1an

(1)− c0an
(0)

.

Let an=

2666666664
an
(0)

an
(1)

���
an
(m−1)

3777777775. Then, in matrix form, the RE is: an+1=Man withM=

2666666664
0 1 0 ��� 0
0 0 1 ��� 0
��� ��� ��� ��� ���
0 0 0 ��� 1
−c0 −c1 ��� ��� −cm−1

3777777775
To solve y 0=My, determine the eigenvectors of M .

� Each �-eigenvector v provides a solution: y(x)= ve�x

� If there are enough eigenvectors, these combine to the general solution.

Comment. If there are not enough eigenvectors, then we know what to do as well (at least in principle):
instead of looking only for solutions of the type y(x) = ve�x, we also need to look for solutions of the type
y(x) = (vx+w)e�x. Note that this can only happen if an eigenvalue is a repeated root of the characteristic
polynomial.

Example 66. Let M =
�
−1 6
−1 4

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�
1
1

�
.
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Solution.

(a) We determine the eigenvectors of M . The characteristic polynomial is:

det(M −�I)=det
��

−1− � 6
−1 4−�

��
=(−1−�)(4− �)+ 6= �2− 3�+2=(�− 1)(�− 2)

Hence, the eigenvalues are �=1 and �=2.

� To find an eigenvector v for �=1, we need to solve
�
−2 6
−1 3

�
v=0.

Hence, v=
�
3
1

�
is an eigenvector for �=1.

� To find an eigenvector v for �=2, we need to solve
�
−3 6
−1 2

�
v=0.

Hence, v=
�
2
1

�
is an eigenvector for �=2.

Hence, the general solution is C1
�
3
1

�
ex+C2

�
2
1

�
e2x.

(b) The corresponding fundamental matrix solution is �=
"
3ex 2e2x

ex e2x

#
.

(c) Note that �(0)=
�
3 2
1 1

�
, so that �(0)−1=

�
1 −2
−1 3

�
. It follows that

eMx=�(x)�(0)−1=

"
3ex 2e2x

ex e2x

#�
1 −2
−1 3

�
=

"
3ex− 2e2x −6ex+6e2x

ex− e2x −2ex+3e2x

#
:

(d) The solution to the IVP is y(x)= eMx
�
1
1

�
=

"
3ex− 2e2x −6ex+6e2x

ex− e2x −2ex+3e2x

#�
1
1

�
=

"
−3ex+4e2x

−ex+2e2x

#
.

Note. If we hadn't already computed eMx, we would use the general solution and solve for the appropriate
values of C1 and C2. Do it that way as well!

Theorem 67. Let M be n�n. Then the matrix exponential satisfies

eM = I +M +
1
2!
M2+

1
3!
M3+ :::

Proof. Define �(x) = I +Mx+
1

2!
M2x2+

1

3!
M3x3+ :::

�0(x) =
d
dx

�
I +Mx+

1
2!
M2x2+

1
3!
M3x3+ :::

�
= 0+M +M2x+

1
2!
M3x2+ :::=M�(x):

Clearly, �(0)= I. Therefore, �(x) is the fundamental matrix solution to y0=My, y(0)= I.

But that's precisely how we defined eMx earlier. It follows that �(x)= eMx. �

(exponential function) ex is the unique solution to y 0= y, y(0)=1.

From here, it follows that ex=1+x+
x2

2!
+

x3

3!
+ :::.

The latter is the Taylor series for ex at x=0 that we have seen in Calculus II.
Important note. We can actually construct this infinite sum directly from y 0= y and y(0)=1.

Indeed, observe how each term, when differentiated, produces the term before it. For instance, d

dx

x3

3!
=
x2

2!
.

Example 68. If A=
�
2 0
0 5

�
, then A100=

"
2100 0

0 5100

#
.
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Example 69. If A=
�
2 0
0 5

�
, then eA=

�
1 0
0 1

�
+

�
2 0
0 5

�
+

1

2!

"
22 0

0 52

#
+ ���=

"
e2 0

0 e5

#
.

Clearly, this works to obtain eD for any diagonal matrix D.

In particular, for Ax=
�
2x 0
0 5x

�
, eAx=

�
1 0
0 1

�
+

�
2x 0
0 5x

�
+

1

2!

"
(2x)2 0

0 (5x)2

#
+ ���=

"
e2x 0

0 e5x

#
.

Example 70. Let M =
�

8 4
−1 4

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�
1
0

�
.

Solution.

(a) We determine the eigenvectors of M . The characteristic polynomial is:

det(M −�I)=det
��

8−� 4
−1 4−�

��
=(8−�)(4− �)+ 4= �2− 12�+ 36=(�− 6)(�− 6)

Hence, the eigenvalues are �=6; 6 (meaning that 6 has multiplicity 2).

� To find eigenvectors v for �=6, we need to solve
�

2 4
−1 −2

�
v= 0.

Hence, v=
�
−2
1

�
is an eigenvector for �=6. There is no independent second eigenvector.

� We therefore search for a solution of the form y(x)= (vx+w)e�x with �=6.

y0(x)= (�vx+ �w+v)e�x=
!
My=(Mvx+Mw)e�x

Equating coefficients of x, we need �v=Mv and �w+v=Mw.

Hence, v must be an eigenvector (which we already computed); we choose v=
�
−2
1

�
.

[Note that any multiple of y(x) will be another solution, so it doesn't matter which multiple of
�
−2
1

�
we choose.]

�w+v=Mw or (M −�)w=v then becomes
�

2 4
−1 −2

�
w=

�
−2
1

�
.

One solution is w=
�
−1
0

�
. [We only need one.]

Hence, the general solution is C1
�
−2
1

�
e6x+C2

��
−2
1

�
x+

�
−1
0

��
e6x.

(b) The corresponding fundamental matrix solution is �=
"
−2e6x −(2x+1)e6x

e6x xe6x

#
.

(c) Note that �(0)=
�
−2 −1
1 0

�
, so that �(0)−1=

�
0 1
−1 −2

�
. It follows that

eMx=�(x)�(0)−1=

"
−2e6x −(2x+1)e6x

e6x xe6x

#�
0 1
−1 −2

�
=

"
(2x+1)e6x 4xe6x

−xe6x −(2x− 1) e6x

#
:

(d) The solution to the IVP is y(x)= eMx
�
1
0

�
=

"
(2x+1)e6x 4xe6x

−xe6x −(2x− 1) e6x

#�
1
0

�
=

"
(2x+1)e6x

−xe6x

#
.
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