
Notes for Lecture 5 Tue, 9/1/2020

Example 29. (review) Find the general solution of y 000− y 00− 5y 0− 3y=0.

Solution. The characteristic polynomial p(D)=D3−D2− 5D− 3= (D− 3)(D+1)2 has roots 3;−1;−1.
Hence, the general solution is y(x)=C1e

3x+(C2+C3x)e
−x.

Example 30. Find the general solution of y 00+4y= 12x.
Solution. Here, p(D) =D2+4, which has roots �2i.
Hence, the general solution is y(x)= yp(x)+C1cos(2x)+C2sin(2x). It remains to find a particular solution yp.

Noting that D2 � (12x) = 0, we apply D2 to both sides of the DE.

We get D2(D2+4) � y=0, which is a homogeneous linear DE! Its general solution is C1+C2x+C3cos(2x)+
C4sin(2x). In particular, yp is of this form for some choice of C1; :::; C4.
It simplifies our life to note that there has to be a particular solution of the simpler form yp=C1+C2x.

[Why?! Because we know that C3cos(2x)+C4sin(2x) can be added to any particular solution.]

It only remains to find appropriate values C1; C2 such that yp
00 + 4yp= 12x. Since yp00 + 4yp = 4C1 + 4C2x,

comparing coefficients yields 4C1=0 and 4C2= 12, so that C1=0 and C2=3. In other words, yp=3x.
Therefore, the general solution to the original DE is y(x)= 3x+C1cos(2x)+C2sin(2x).

Example 31. Find the general solution of y 00+4y 0+4y= e3x.

Solution. This is p(D)y= e3x with p(D)=D2+4D+4=(D+2)2.

Hence, the general solution is y(x)= yp(x)+ (C1+C2x)e
−2x. It remains to find a particular solution yp.

Note that (D− 3)e3x=0. Hence, we apply (D− 3) to the DE to get (D− 3)(D+2)2y=0.

This homogeneous linear DE has general solution (C1+C2x)e
−2x+C3e

3x. We conclude that the original DE
must have a particular solution of the form yp=C3e3x.

To determine the value of C3, we plug into the original DE: yp
00+4yp

0 +4yp=(9+4 �3+4)C3e3x=
!
e3x. Hence,

C3=1/25. In conclusion, the general solution is y(x)= (C1+C2x)e
−2x+

1

25
e3x.

We found a recipe for solving nonhomogeneous linear DEs with constant coefficients.
Our approach works for p(D)y= f(x) whenever the right-hand side f(x) is the solution of some homogeneous
linear DE with constant coefficients: q(D)f(x)= 0

Theorem 32. To find a particular solution yp to an inhomogeneous linear DE with constant
coefficients p(D)y= f(x):

� Find q(D) so that q(D)f(x)= 0. [This does not work for all f(x).]

� Let r1; :::; rn be the (�old�) roots of the polynomial p(D).

Let s1; :::; sm be the (�new�) roots of the polynomial q(D).

� It follows that yp solves q(D) p(D)y=0.

The characteristic polynomial of this DE has roots r1; :::; rn, s1; :::; sm.

Let v1; :::; vm be the �new� solutions (i.e. not solutions of the �old� p(D)y=0).

By plugging into p(D)yp= f(x), we find (unique) Ci so that yp=C1v1+ :::+Cmvm.

For which f(x) does this work? By Theorem 25, we know exactly which f(x) are solutions to homogeneous
linear DEs with constant coefficients: these are linear combinations of exponentials xj erx (which includes
xj eaxcos(bx) and xj eaxsin(bx)).
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Example 33. Find the general solution of y 00+4y 0+4y=7e−2x.
Solution. The �old� roots are −2;−2. The �new� roots are −2. Hence, there has to be a particular solution of
the form yp=Cx2e−2x. To find the value of C, we plug into the DE.

yp
0 =C(−2x2+2x)e−2x

yp
00=C(4x2− 8x+2)e−2x

yp
00+4yp

0 +4yp=2Ce−2x=
!
7e−2x

It follows that C=7/2, so that yp=
7

2
x2e−2x. The general solution is y(x)=

�
C1+C2x+

7

2
x2

�
e−2x.

Example 34. Find a particular solution of y 00+4y 0+4y=x cos(x).
Solution. The �old� roots are −2;−2. The �new� roots are �i;�i. Hence, there has to be a particular solution
of the form yp=(C1+C2x)cos(x)+ (C3+C4x)sin(x). To find the value of the Cj's, we plug into the DE.
yp
0 =(C2+C3+C4x)cos(x)+ (C4−C1−C2x)sin(x)

yp
00= (2C4−C1−C2x)cos(x) + (−2C2−C3−C4x)sin(x)
yp
00+4yp

0 +4yp=(3C1+4C2+4C3+2C4+(3C2+4C4)x)cos(x)

+ (−4C1− 2C2+3C3+4C4+ (−4C2+3C4)x)sin(x)=
!
x cos(x).

Equating the coefficients of cos(x), xcos(x), sin(x), x sin(x), we get the equations 3C1+4C2+4C3+2C4=0,
3C2+4C4=1, −4C1− 2C2+3C3+4C4=0, −4C2+3C4=0.

Solving, we find C1=−
4

125 , C2=
3

25 , C3=−
22
125 , C4=

4

25 . [Make sure you know how to do this tedious step.]

Hence, yp=
�
− 4

125 +
3

25x
�
cos(x)+

�
− 22

125 +
4

25x
�
sin(x).

Example 35. (extra) Find a particular solution of y 00+4y 0+4y=5e−2x− 3x cos(x).
Solution. Instead of starting all over, recall that we already found yM in Example 33 such that LyM= 7e−2x

(here, we write L= p(D)). Also, from Example 34 we have y� such that Ly�=x cos(x).

By linearity, it follows that L
�
5

7
yM− 3y�

�
=
5

7
LyM− 3Ly�=5e−2x− 3x cos(x).

Hence, yp=
5

7
yM− 3y�= 5

2
x2e−2x− 3

h�
− 4

125
+

3

25
x
�
cos(x)+

�
− 22

125
+

4

25
x
�
sin(x)

i
.

Example 36. (extra) Find a particular solution of y 00+4y 0+4y=4e3xsin(2x)− x sin(x).
Solution. The �old� roots are −2;−2. The �new� roots are 3� 2i;�i;�i.
Hence, there has to be a particular solution of the form
yp=C1e

3xcos(2x)+C2e
3xsin(2x) + (C3+C4x)cos(x) + (C5+C6x)sin(x).

To find the values of C1; :::; C6, we plug into the DE. But this final step is so boring that we stop here.
Computers (currently?) cannot afford to be as selective; mine obediently calculated:

yp=−
4

841e
3x(20cos(2x)− 21sin(2x))+ 1

125((−22+ 20x)cos(x)+ (4− 15x)sin(x))

Example 37. We have been factoring differential operators like D2+4D+4= (D+2)2.

Things become much more complicated when the coefficients are not constant!
For instance, the linear DE y 00+4y0+4xy=0 can be written as Ly=0 with L=D2+4D+4x. However, in
general, such operators cannot be factored (unless we allow as coefficients functions in x that we are not familiar
with). [On the other hand, any ordinary polynomial can be factored over the complex numbers.]
One indication that things become much more complicated is that x and D do not commute: xD=/ Dx!!

Indeed, (xD)f(x)=xf 0(x) while (Dx)f(x)= d

dx
[xf(x)] = f(x)+xf 0(x)= (1+xD)f(x).

This computation shows that, in fact, Dx= xD+1.
More next time!

Armin Straub
straub@southalabama.edu

10



Notes for Lecture 6 Thu, 9/3/2020

Review. Linear DEs are those that can be written as Ly= f(x) where L is a linear differential
operator: namely,

L= pn(x)Dn+ pn−1(x)Dn−1+ :::+ p1(x)D+ p0(x): (1)

Recall that the operators xD and Dx are not the same: instead, Dx=xD+1.
We say that an operator of the form (1) is in normal form.
For instance. xD is in normal, whereas Dx is not in normal form. The normal form of Dx is xD+1.

Example 38. Let a= a(x) be some function.

(a) Write the operator Da in normal form [normal form means as in (1)].

(b) Write the operator D2a in normal form.

Solution.

(a) (Da)f(x)= d

dx
[a(x) f(x)] = a0(x)f(x)+ a(x)f 0(x)= (a0+ aD)f(x)

Hence, Da= aD+ a0.

(b) (D2a)f(x)=
d2

dx2
[a(x) f(x)] =

d

dx
[a0(x)f(x)+ a(x)f 0(x)] = a00(x)f(x) + 2a0(x)f 0(x)+ a(x)f 00(x)

= (a00+2a0D+ aD2)f(x)

Hence, D2a= aD2+2a0D+ a00.

Example 39. Suppose that a and b depend on x. Expand (D+ a)(D+ b) in normal form.
Solution. (D+ a)(D+ b)=D2+Db+ aD+ ab=D2+(bD+ b0)+ aD+ ab=D2+(a+ b)D+ ab+ b0

Comment. Of course, if b is a constant, then b0=0 and we just get the familiar expansion.
Comment. At this point, it is not surprising that, in general, (D+ a)(D+ b)=/ (D+ b)(D+ a).

Example 40. Suppose we want to factor D2+ pD+ q as (D+ a)(D+ b). [p; q; a; b depend on x]

(a) Spell out equations to find a and b.

(b) Find all factorizations of D2. [An obvious one is D2=D �D but there is others!]

Solution.

(a) Matching coefficients with (D+ a)(D+ b)=D2+(a+ b)D+ ab+ b0, we find that we need

p= a+ b; q= ab+ b0:

Equivalently, a= p− b and q= (p− b)b+ b0. The latter is a nonlinear (!) DE for b. Once solved for b,
we obtain a as a= p− b.

(b) This is the case p= q=0. The DE for b becomes b0= b2.
Because it is separable (show all details!), we find that b(x)= 1

C − x
or b(x)= 0.

Since a=−b, we obtain the factorizations D2=
�
D− 1

C −x

��
D+

1

C −x

�
and D2=D �D.

Our computations show that there are no further factorizations.

Comment. Note that this example illustrates that factorization of differential operators is not unique!

For instance, D2=D �D and D2=
�
D+

1

x

�
�
�
D− 1

x

�
(the case C =0 above).

Comment. In general, the nonlinear DE for b does not have any polynomial or rational solution (or, in fact, any
solution that can be expressed in terms of functions that we are familiar with).
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A crash course in computing determinants

Review. The determinant of A, written as det(A) or jAj, is a number with the property that:

det(A)=/ 0 () A is invertible
() Ax= b has a (unique) solution x (for all b)
() Ax=0 is only solved by x=0

Example 41.
�������� a b
c d

��������= ad− bc

Example 42. Compute

��������������
1 2 0
3 −1 2
2 0 1

�������������� by cofactor expansion.
Solution. We expand by the first row:

��������������
1 2 0
3 −1 2
2 0 1

��������������=1 �

��������������
+
−1 2
0 1

��������������− 2 �
��������������

−
3 2
2 1

��������������+0 �

��������������
+

3 −1
2 0

��������������
=
i.e.

1 �
�������� −1 2
0 1

��������− 2 � �������� 3 2
2 1

��������+0 �
�������� 3 −1
2 0

��������=1 � (−1)− 2 � (−1)+ 0= 1

Each term in the cofactor expansion is �1 times an entry times a smaller determinant (row and
column of entry deleted).

The �1 is assigned to each entry according to

266664
+ − + ���
− + −
+ − +
��� ���

377775.
Solution. We expand by the second column:

��������������
1 2 0
3 −1 2
2 0 1

��������������=−2 �
��������������

−
3 2
2 1

��������������+ (−1) �

��������������
1 0
+

2 1

��������������− 0 �
��������������
1 0
3 2
−

��������������
= − 2 � (−1)+ (−1) � 1− 0=1

Example 43. Compute

������������������
1 0 3 4
0 2 1 5
0 0 2 1
2 0 8 5

������������������.
Solution. We can expand by the second column:������������������
1 0 3 4
0 2 1 5
0 0 2 1
2 0 8 5

������������������=−0
��������������
0 1 5
0 2 1
2 8 5

��������������+2

��������������
1 3 4
0 2 1
2 8 5

��������������− 0
��������������
1 3 4
0 1 5
2 8 5

��������������+0

��������������
1 3 4
0 1 5
0 2 1

��������������
[Of course, you don't have to spell out the 3� 3 matrices that get multiplied with 0.]
We can compute the remaining 3� 3 matrix in any way we prefer. One option is to expand by the first column:

2

��������������
1 3 4
0 2 1
2 8 5

��������������=2

�
+1

�������� 2 1
8 5

��������+2
�������� 3 4
2 1

��������
�
=2(1 � 2+2 � (−5))=−16

Comment. For cofactor expansion, choosing to expand by the second column is the best choice because this
column has more zeros than any other column or row.
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Notes for Lecture 7 Tue, 9/8/2020

Solving linear recurrences with constant coefficients

Motivation: Fibonacci numbers

The numbers 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; ::: are called Fibonacci numbers.

They are defined by the recursion Fn+1=Fn+Fn−1 and F0=0, F1=1.

How fast are they growing?
Have a look at ratios of Fibonacci numbers: 2

1
= 2, 3

2
= 1.5, 5

3
� 1.667, 8

5
= 1.6, 13

8
= 1.625, 21

13 = 1.615,
34
21 = 1.619, :::

These ratios approach the golden ratio '=
1+ 5

p

2
= 1.618:::

In other words, it appears that lim
n!1

Fn+1
Fn

=
1+ 5

p

2
. This indeed follows from Theorem 47 below.

We can derive all of that using the same ideas as in the case of linear differential equations. The
crucial observation that we can write the recursion in operator form:

Fn+1=Fn+Fn−1 is equivalent to (N2−N − 1)Fn=0.

Here, N is the shift operator: Nan= an+1.

Comment. Recurrence equations are discrete analogs of differential equations.
For instance, recall that f 0(x)� f(x+1)− f(x) so that D is approximated by N − 1.

Example 44. Find the general solution to the recursion an+1=7an.

Solution. Note that an=7an−1=7 � 7an−2= ���=7na0.
Hence, the general solution is an=C � 7n.
Comment. This is analogous to y 0=7y having the general solution y(x)=Ce7x.

Example 45. Find the general solution to the recursion an+2= an+1+6an.

Solution. The recursion can be written as p(N)an=0 where p(N)=N2−N − 6= (N − 3)(N +2).
Since (N − 3)an=0 has solution an=C � 3n, and since (N +2)an=0 has solution an=C � (−2)n (compare
previous example), we conclude that the general solution is an=C1 � 3n+C2 � (−2)n.
Comment. This must indeed be the general solution, because the two degrees of freedom C1; C2 allow us to
match any initial conditions a0=A, a1=B: the two equations C1+C2=A and 3C1−2C2=B in matrix form

are
�
1 1
3 −2

��
C1

C2

�
=

�
A
B

�
, which always has a (unique) solution because det

��
1 1
3 −2

��
=−5=/ 0.

Example 46. Find the general solution to the recursion an+3=2an+2+ an+1− 2an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N3− 2N2−N +2 has roots 2; 1;−1.
Hence, the general solution is an=C1 � 2n+C2+C3 � (−1)n.
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Theorem 47. (Binet's formula) Fn=
1

5
p

h�
1+ 5

p

2

�n
−
�
1− 5

p

2

�ni
Proof. The recursion Fn+1=Fn+Fn−1 can be written as p(N)an=0 where p(N)=N2−N − 1 has roots

�1=
1+ 5

p

2
� 1.618; �2=

1− 5
p

2
�−0.618:

Hence, Fn=C1 ��1n+C2 ��2n and we only need to figure out the two unknowns C1, C2. We can do that using

the two initial conditions: F0=C1+C2=
!
0, F1=C1 �

1+ 5
p

2
+C2 �

1− 5
p

2
=
!
1.

Solving, we find C1=
1

5
p and C2=−

1

5
p so that, in conclusion, Fn=

1

5
p (�1

n− �2
n), as claimed. �

Comment. For large n, Fn�
1

5
p �1

n (because �2
n becomes very small). In fact, Fn= round

�
1

5
p

�
1+ 5

p

2

�n�
.

Back to the quotient of Fibonacci numbers. In particular, because �1
n dominates �2

n, it is now transparent
that the ratios Fn+1

Fn
approach �1=

1+ 5
p

2
� 1.618. To be precise, note that

Fn+1
Fn

=

1

5
p (�1

n+1− �2
n+1)

1

5
p (�1

n− �2
n)

=
�1
n+1−�2

n+1

�1
n−�2n

=
�1−�2

�
�2
�1

�n
1−

�
�2
�1

�n −!n!1 �1− 0
1− 0 = �1:

In fact, it follows from �2 < 0 that the ratios Fn+1
Fn

approach �1 in the alternating fashion that we observed
numerically earlier. Can you see that?

Example 48. Find the general solution to the recursion an+2=4an+1− 4an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N2− 4N +4 has roots 2; 2.
So a solution is 2n and, from our discussion of DEs, it is probably not surprising that a second solution is n � 2n.
Hence, the general solution is an=C1 � 2n+C2 �n � 2n= (C1+C2n) � 2n.
Comment. This is analogous to (D− 2)2y 0=0 having the general solution y(x)= (C1+C2x)e

2x.
Check! Let's check that an=n � 2n indeed satisfies the recursion (N − 2)2an=0.

(N − 2)n � 2n= (n+1)2n+1− 2n � 2n=2n+1, so that (N − 2)2n � 2n= (N − 2)2n+1=0.

Combined, we obtain the following analog of Theorem 25 for recurrence equations (RE):
Solutions to such recurrences are called C-finite sequences.

Theorem 49. Consider the homogeneous linear RE with constant coefficients p(N)an=0.

� If r is a root of the characteristic polynomial and if k is its multiplicity, then k (inde-
pendent) solutions of the RE are given by njrn for j=0; 1; :::; k− 1.

� Combining these solutions for all roots, gives the general solution.

Moreover. limn!1
an+1
an

equals the largest root r that contributes to an.

Example 50. (homework) Consider the sequence an defined by an+2=2an+1+4an and a0=0,

a1=1. Determine lim
n!1

an+1
an

.

First few terms of sequence. 0; 1; 2; 8; 24;80; 256; 832; :::
These are actually related to Fibonacci numbers. Indeed, an = 2n−1Fn. Can you prove this directly from the
recursions? Alternatively, this follows from the Binet formulas.

Solution. Proceeding as for the Fibonacci numbers, we find lim
n!1

an+1
an

=1+ 5
p
� 3.23607.

Comment. With just a little more work, we find the Binet formula an=
(1+ 5

p
)n− (1− 5

p
)n

2 5
p .
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Notes for Lecture 8 Thu, 9/10/2020

Crash course: Eigenvalues and eigenvectors

If Ax=�x (and x=/ 0), then x is an eigenvector of A with eigenvalue � (just a number).

Note that for the equation Ax=�x to make sense, A needs to be a square matrix (i.e. n�n).

Key observation:

Ax=�x
() Ax−�x=0
() (A−�I)x=0
This homogeneous system has a nontrivial solution x if and only if det(A−�I)= 0.

To find eigenvectors and eigenvalues of A:

(a) First, find the eigenvalues � by solving det(A−�I)= 0.

det(A−�I) is a polynomial in �, called the characteristic polynomial of A.

(b) Then, for each eigenvalue �, find corresponding eigenvectors by solving (A−�I)x=0.

Example 51. Determine the eigenvalues and eigenvectors of A=
�
8 −10
5 −7

�
.

Solution. The characteristic polynomial is:

det(A− �I) =det
��

8−� −10
5 −7− �

��
=(8−�)(−7−�)+ 50=�2−�− 6= (�− 3)(�+2)

Hence, the eigenvalues are �=3 and �=−2.

� To find an eigenvector for �=3, we need to solve
�
5 −10
5 −10

�
x=0.

Hence, x=
�
2
1

�
is an eigenvector for �=3.

� To find an eigenvector for �=−2, we need to solve
�
10 −10
5 −5

�
x= 0.

Hence, x=
�
1
1

�
is an eigenvector for �=−2.

Check!
�
8 −10
5 −7

��
2
1

�
=

�
6
3

�
=3 �

�
2
1

�
and

�
8 −10
5 −7

��
1
1

�
=

�
−2
−2

�
=−2 �

�
1
1

�
On the other hand, a random other vector like

�
1
2

�
is not an eigenvector:

�
8 −10
5 −7

��
1
2

�
=

�
−12
−9

�
=/ �

�
1
2

�
.

Example 52. (homework) Determine the eigenvalues and eigenvectors of A=
�
1 −6
1 −4

�
.

Solution. (final answer only) x=
�
2
1

�
is an eigenvector for �=−2, and x=

�
3
1

�
is an eigenvector for �=−1.
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Back to linear recurrences

Example 53. (review) Consider the sequence an defined by an+2 = an+1 + 2an and a0 = 1,
a1=8.

(a) Determine the first few terms of the sequence.

(b) Find a Binet-like formula for an.

(c) Determine lim
n!1

an+1
an

.

Solution.

(a) a2= 10, a3= 26

(b) The recursion can be written as p(N)an=0 where p(N) =N2−N − 2 has roots 2;−1.
Hence, an=�12n+�2 (−1)n and we only need to figure out the two unknowns �1, �2. We can do that
using the two initial conditions: a0=�1+�2=1, a1=2�1−�2=8.
Solving, we find �1=3 and �2=−2 so that, in conclusion, an=3 � 2n− 2(−1)n.

(c) It follows from the Binet-like formula that lim
n!1

an+1
an

=2.

Example 54. We model rabbit reproduction as follows.

Each month, every pair of adult rabbits pro-
duces one pair of baby rabbit as offspring.
Meanwhile, it takes baby rabbits one month
to mature to adults.

adult rabbit baby rabbit
1

1

1

Comment. In this simplified model, rabbits always come in male/female pairs and no rabbits die. Though these
feautures might make it sound fairly useless, the model may have some merit when describing populations under
ideal conditions (unlimited resources) and over short time (no deaths).
Historical comment. The question how many rabbits there are after one year, when starting out with a pair of
baby rabbits is famously included in the 1202 textbook of the Italian mathematician Leonardo of Pisa, known as
Fibonacci.

If we start with one baby rabbit pair, how many adult rabbits are there after n months?
Solution. Let an be the number of baby rabbit pairs after n months. Likewise, bn is the number of adult rabbit
pairs. The transition from one month to the next is given by an+1= bn and bn+1=an+ bn. Using an= bn−1
(that's an equivalent version of the first equation) in the second equation, we obtain bn+1= bn+ bn−1.
The initial conditions are b0=0 and b1=0.
It follows that the number bn of adult rabbits are precisely the Fibonacci numbers Fn.
Comment. Note that the transition from one month to the next is described by in matrix-vector form as�
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