Sketch of Lecture 23 Thu, 11/21/2019

| Steady-state temperature

Review. (2D and 3D heat equation) In higher dimensions, the heat equation takes the form
Ut = k(Upag + Uyy) OF U = k(Ugq + Uyy + Uss).

Note that Au =gz + uyy + - is the Laplace operator you may know from Calculus Il (more below).

If temperature is steady, then u; = 0. Hence, the steady-state temperature u(xz, y) must satisfy

(Laplace equation)

Ugz + Uyy =0

Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions.
Comment. Also known as the “potential equation”; satisfied by electric/gravitational potential functions.
Recall from Calculus 111 (if you have taken that class) that the gradient of a scalar function f(z,y) is the vector

field F=grad f = Vf:{ ;fgz’ Z% } One says that F' is a gradient field and f is a potential function for F’
Y 9

(for instance, F' could be a gravitational field with gravitational potential f).

The divergence of a vector field G = [ Zgi’ Z% } is div G = g, + hy. One also writes divG =V - G.

The gradient field of a scalar function f is divergence-free if and only if f satisfies the Laplace equation A f =0.
Other notations. Af = divgrad f=V -V f=V2f

Boundary conditions. For steady-state temperatures profiles, it is natural to prescribe the temperature on the
boundary of a region R C IR? (or R C IR? in the 3D case).

Comment. Gravitational and electrostatic potentials (not in the vacuum) satisfy the Poisson equation uz, +
Uyy = f(x,y), the inhomogeneous version of the Laplace equation.

(Dirichlet problem)

Ugy + Uyy = 0 within region R

u(z,y)= f(x,y) on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region R, and prescribed values
on the boundary of that region (“Dirichlet boundary conditions”).

In our next example we solve the Dirichlet problem in the case when R is a rectangle.

Important observation. We are using homogeneous boundary conditions for three of the sides. That is actually

no loss of generality.
Upz +Uyy=0 (PDE)

Indeed, note that in order to solve u(z,0) = fi(x) we can solve the four Dirichlet problems
u(z,b) = fao(z) (BC)
u(0,y) = f3(x)
u(a, y) = f4(.’Z’)
Ugg + Uyy =0 Uz + Uyy =0 Ugg + Uyy =0 Ugg + Uyy =0
u(z,0) = fi(x) u(z,0) =0 u(z,0) =0 u(z,0) =0
u(z,b) =0 u(z,b) = fax) u(z,b) =0 u(z,b) =0
U(O, y) =0 U(O, y) =0 U(O, y) = fg(l') U(O, y) =0
ula,y) = 0 u(a,y) = 0 u(a,y) = 0 u(a,y) = falx)
and the sum of the four solutions solves the Dirichlet problem we started with.
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Example 133. Find the unique solution u(z, y) to: u(z,0) = f(z)

Solution.

We proceed as before and look for solutions u(z, y) = X ()Y (y) (separation of variables).
Plugging into (PDE), we get X" (2)Y (y) + X ()Y (y), and so X'@) Yy

S ORI = const =: —\.
We thus have X"/ + XX =0and Y/ —)\Y =0.

From the last three (BC), we get X (0) =0, X(a)=0, Y (b) =0.

We ignore the first (inhomogeneous) condition for now.

So X solves X"+ XX =0, X(0)=0, X(a)=0.

From earlier, we know that, up to multiples, the only nonzero solutions of this eigenvalue problem are
X(z)= sin(%lm) corresponding to A = (%)2, n=1,23...

On the other hand, Y solves Y/ — A\Y =0, and hence Y (y) — AeV Y 4 Be— VA,

The condition Y (b) =0 implies that AeVAb L Be=VAb—() so that B=—Ae2VAP,

Hence, Y (y) = A(eﬁy — e*‘/x(y*%)).

Taken together, we have the solutions u,, (x,y) = sin(%nw) (eﬂTny e _2b)) solving (PDE)+(BC),
with the exception of u(x,0)= f(x).

We wish to combine these in such a way that u(x,0) = f(z) holds as well.
At y=0, up(z,0)= sin(%x)(l — 270/ @) " All of these are 2a-periodic.

Hence, we extend f(x), which is only given on (0, a), to an odd 2a-periodic function (its Fourier sine
series!). By making it odd, its Fourier series will only involve sine terms: f(z) =3 "7 b, sin(%ﬂ z).

Note that
1/ . (nmx 2/ . (nTx
bn—alaf(m)51n(7)dm—5[) f(m)sm(T)dx,

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x)
on its original interval of definition.

Consequently, (PDE)+(BC)+(IC) is solved by

[ee] [ee]

by, b, . (Wn )( Iy —ﬂ(y72b))
u(x,y) = — " uu(z,y)= — " ____sin(—ax])(ee?—e @ ,
( ) ngl 1 _eQﬂnb/a ( ) n;l 1— eQﬂ'nb/a a
where
2 [ . [nTxT
bn—a/o f(ac)sm(T)dac.
Armin Straub 50

straub@southalabama.edu



Ugg + Uyy =0
Example 134. Find the unique solution u(z, y) to: u(z,0) =1
u(x,2) =0
u(0,y) =0
u(l,y) =

Solution. This is the special case of the previous example with a =1, b=2 and
f(x)=1 for x € (0,1).

From Example 111, we know that f(z) has the Fourier sine series

o0
4

flz)= Z %sm(nﬂ'x), z€(0,1).

n=1

n odd

Hence,
_ . B 4
u(wv)= D2 g n(ma) (7Y — e T,

n odd

Comment. The temperature at the center is u(%, 1) = 0.0549 (only the first

term of the infinite sum suffices for this estimate; the first three terms suffice for
9 digits of accuracy).
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