Sketch of Lecture 22 Tue, 11/19/2019

The boundary conditions in the next example model insulated ends.

U= KUy (PDE)

Example 131. Find the unique solution u(z,t) to: u;(0,t) =wu,(L,t)=0 (BC)

u(xz,0)= f(x), x€(0,L) (IC)

Solution.

We proceed as before and look for solutions u(x,t) = X (z)T'(t) (separation of variables).
Plugging into (PDE), we get X (z)T"(t) =kX " (x)T(t), and so X (=) - T'(t)

X0 — BT = const =: —\.
We thus have X"/ +AX =0 and T’ + \kT =0.

From the (BC), i.e. u;(0,t) = X'(0)T(t) =0, we get X'(0) =0.
Likewise, uz(L,t) = X'(L)T(t) =0 implies X'(L)=0.

So X solves X"+ XX =0, X'(0)=0, X'(L)=0. It is left as a homework to show that, up to multiples,

. . . 2
the only nonzero solutions of this eigenvalue problem are X (x) = COS(Lan) corresponding to A = (%) ,
n=0,1,2,3.... [See practice problems.]

wn\2
On the other hand (as before), T solves T+ AkT =0, and hence T'(t) = et — o~ (F)ht

)Vt

Taken together, we have the solutions u,(z,t) = e (7 cos(%na:) solving (PDE)+(BC).

We wish to combine these in such a way that (IC) holds.
At t=0, up(z,0)= Cos(WL—na:). All of these are 2L-periodic.

Hence, we extend f(x), which is only given on (0, L), to an even 2L-periodic function (its Fourier cosine
series!). By making it even, its Fourier series only involves cosine terms: f(z)= % + ZZOZO QA cos(Ln az)

L
Note that
1 [t nmwx 2 L nmwx
an—f[Lf(x)Cos( T )dw_f/o f(ac)cos( T )dw,

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x)
on its original interval of definition.

Consequently, (PDE)+(BC)+(IC) is solved by

where

o) 0o a2,
u(az,t):%uo(a:,t) + Z anun(m,t):%-s- Z ane_(T) ktcos(w—;m),
n=1

n=1

an = z/OLf(J})COS(an)dJ).
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| The inhomogeneous heat equation |

We next indicate that we can similarly solve the nonhomogeneous heat equation (with nonhomo-
geneous boundary conditions).

Comment. We indicated earlier that

U = kg (PDE)
u(0,t)=a, u(L,t)=>b (BO)
u(z,0)= f(x), =x€(0,L) (1IC)

can be solved by realizing that Az + B solves (PDE).

Indeed, let v(z) = a + bzaa: (so that v(0) = a and v(L) = b). We then look for a solution of the form

u(z,t) =v(x) +w(x,t). Note that u(z,t) solves (PDE)+(BC)+(IC) if and only if w(x,t) solves:

Wi =kWgy (PDE)
w(0,t)=0, w(L,t)=0 (BC*)
w(z,0)= f(z)—v(z), =x€(0,L) (1IC)

This the (homogeneous) heat equation that we know how to solve.

v(x) is called the steady-state solution (it does not depend on time!) and w(x,t) the transient solution (note
that w(x,t) and its partial derivatives tend to zero as t — o0).

Example 132. Consider the heat flow problem: u(0,t)=1, u,(3,t)=-5 (BC)
u(z,0)=f(z), 2€(0,3) (IC)

Determine the steady-state solution and spell out equations characterizing the transient solution.

Solution. We look for a solution of the form u(z, t) = v(x) + w(x,t), where v(z) is the steady-state solution
and the transient solution w(z,t) (as well as its derivatives) tend to zero as t — co.

e Plugging into (PDE), we get w; = 3v" + 3w, + 422, Letting t — 00, this becomes 0 = 3v"’ + 4x2.

e Plugging into (BC), we get w(0,¢) +v(0) =1 and wy(3,t) +v'(3) = —5.
Letting ¢ — 0o, this becomes v(0) =1 and v’(3) = —5.

e Solving the ODE 0= 3v"" + 422 with boundary conditions v(0) =1 and v’(3) = —5, we find
4 o L a4
v(z) = 3 dedz = —5 +C1+ Cox

and therefore the steady-state solution v(z) = —%z‘l +147x.

On the other hand, the transient solution w(x,t) is characterized as the unique solution to:

Wi = 3Wgq (PDE*)
w(0,t) =0, wg(3,t)=0 (BC*)
w(z,0) = f(z) —v(z) (IC*)

We know how to solve this homogeneous heat flow problem (see practice problems) using separation of variables.
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