Sketch of Lecture 21 Thu, 11/14/2019

Review. The heat equation: u; = k.,

Let us think about what is needed to describe a unique solution of the heat equation.

e Initial condition at t =0: u(z,0)= f(z) (IC)

This specifies an initial temperature distribution at time ¢t =0.

e Boundary condition at z =0 and z = L: (BC)

Assuming that heat only enters/exits at the boundary (think of our rod as being insulated, except possibly
at the two ends), we need some condition on the temperature at the ends. For instance:

o u(0,t)=A, uw(L,t)=B

This models a rod where one end is kept at temperature A and the other end at temperature B.

o ug(0,t) =wuy(L,t)=0

This models a rod whose ends are insulated as well.

Under such assumptions, our physical intuition suggests that there should be a unique solution.

Important comment. We can always transform the case u(0,t) = A, u(L,t) = B into u(0,t) =u(L,t) =0 by
using the fact that u(t,z) =ax + b solves u; = kuz,. Can you spell this out?

Example 128. (cont’d) To get a feeling, let us find some solutions to u; = ;.
e u(x,t)=ax+bis a solution.

e For instance, u(x,t) =e’e” is a solution.

[Not a very interesting one for modeling heat flow because it increases exponentially in time.]

t

e More interesting are u(z,t) =e ‘cos(z) and u(z,t) = e ’sin(z).

t t

9 2 . .
e More generally, e " "cos(nx) and e~ " 'sin(nx) are solutions.

Important observation. This actually reveals a strategy for solving the PDE w¢ = uz, with conditions such as:

u(0,t) =u(m,t)=0 (BC)
u(z,0)= f(z), =x€(0,L) (IC)

Namely, the solutions w,(z,t) = e~ " sin(nz) all satisfy (BC).
It remains to satisfy (IC). Note that u,(x,0)=sin(nz). To find u(x,t) such that u(z,0) = f(x), we can write
f(x) as a Fourier sine series (i.e. extend f(x) to a 2m-periodic odd function):

flx)= Z bpsin(nx)

n>1

Then u(z,t) = Z bpun(z,t) = Z bne ™’tsin(nx) solves the PDE u; = ug, with (BC) and (IC).
n>1 n>1
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U= KkUyy (PDE)
Example 129. Find the unique solution to: u(0,t)= (L,t) (BC)
u(z,0) = f(x), (0 Ly  (IC)

Solution.

e We will first look for simple solutions of (PDE)+(BC) (and then we plan to take a combination of such
solutions that satisfies (IC) as well). Namely, we look for solutions u(x,t) = X (z)T'(t). This approach
is called separation of variables and it is crucial for solving other PDEs as well.

X"(z) _ T'()

X(@)  kTQ@)

Note that the two sides cannot depend on x (because the right-hand side doesn't) and they cannot depend

on t (because the left-hand side doesn’t). Hence, they have to be constant. Let's call this constant —A\.

Then, (&) — T/

"X () kT()

We thus have X"/ + XX =0 and T’ 4+ AkT =0.

e Plugging into (PDE), we get X (2)T'(t) =k X" (z)T(t), and so

=const =: —\.

e Consider (BC). Note that u(0,t) = X (0)T'(¢t) =0 implies X (0) =
[Because otherwise T'(t) =0 for all ¢, which would mean that u(x,t) is the dull zero solution.]
Likewise, u(L,t) = X (L)T(t) =0 implies X(L)=0.

e So X solves X"+ XX =0, X(0)=0, X(L)=0. We know that, up to multiples, the only nonzero solutions

are the eigenfunctions X (z) = sin(LLn ac) corresponding to the eigenvalues A\ = (%)2, n=1,23....

a2
e On the other hand, T solves T’ + A\kT =0, and hence T'(t) :eiAkt:ef(T) kt.

nny2
- ktsin(ﬂw

e Taken together, we have the solutions u,(z,t) =e¢ T

) solving (PDE)+(BC).

e We wish to combine these in such a way that (IC) holds as well.

At t=0, up(xz,0) = Sin(%x). All of these are 2 L-periodic.

Hence, we extend f(x), which is only given on (0, L), to an odd 2L-periodic function (its Fourier sine
series!). By making it odd, its Fourier series will only involve sine terms: f(x)= 22021 bn sin(%n m)

Consequently, (PDE)+(BC)+(IC) is solved by

™n

t)= S b un(z,t) = 3 bne_(T)thsin ).
D > (F)

Ut = Ugy
Example 130. Find the unique solution to: u(0,¢)=wu(1,t)=0
u(z,0)=1, xz€(0,1)
Solution. This is the case k=1, L=1 and f(x) =1, x € (0, 1), of the previous example.

In the final step, we extend f(z) to the 2-periodic odd function of Example 111. In particular, earlier, we have
already computed that the Fourier series is

o0

4 .
flx)= Z Esm(nms).
n=1
n odd
— 4
H t) —e
ence, u(x, Z —e "’tsin(n7x).
n odd

Comment. Note that, for ¢t > 0, the exponential very quickly approaches 0 (because of the —n?in the exponent),
so that we get very accurate approximations with only a handful terms.

Make some 3D plots!
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