
Sketch of Lecture 20 Tue, 11/5/2019

Review.

� The BVP y 00+4y=0, y(0)=0, y(1)=0 has the unique solution y(x)= 0.

� The BVP y 00+�2y=0, y(0)=0, y(1)=0 is solved by y(x)=B sin(�x) for any value B.

It is therefore natural to ask: for which � does the BVP y 00+ �y = 0, y(0) = 0, y(L) = 0 have
nonzero solutions?

Such solutions are called eigenfunctions and � is the corresponding eigenvalue.
Remark. Compare that to our previous use of the term eigenvalue: given a matrix A, we asked: for which � does
Av ¡ �v = 0 have nonzero solutions v? Such solutions were called eigenvectors and � was the corresponding
eigenvalue.

Example 124. Find all eigenfunctions and eigenvalues of y 00+�y=0, y(0)= 0, y(L)= 0.

Such a problem is called an eigenvalue problem.

Solution. The solutions of the DE look di�erent in the cases �<0, �=0, �>0, so we consider them individually.

�=0. Then y(x)=Ax+B and y(0)= y(L)= 0 implies that y(x)= 0. No eigenfunction here.

�< 0. Write �=¡�2. Then y(x)=Ae�x+Be¡�x. y(0)=A+B=
!
0 implies B=¡A. Using that, we get

y(L)=A(e�L¡ e¡�L)=
!
0. For eigenfunctions we need A=/ 0, so e�L= e¡�L which implies �L=¡�L.

This cannot happen since �=/ 0 and L=/ 0. Again, no eigenfunctions in this case.

�> 0. Write �= �2. Then y(x)=Acos(�x)+B sin(�x). y(0)=A=
!
0. Using that, y(L)=B sin(�L)=

!
0.

Since B =/ 0 for eigenfunctions, we need sin(�L) = 0. This happens if �L = n� for n = 0; 1; 2; :::.
Consequently, we do �nd the eigenfunctions yn(x)= sinn�x

L
, n=1;2;3; :::, with eigenvalue �=

¡ n�
L

�2
.

Example 125. Suppose that a rod of length L is compressed by a force P (with ends being pinned
[not clamped] down). We model the shape of the rod by a function y(x) on some interval [0; L].

The theory of elasticity predicts that, under certain simplifying assumptions, y should satisfy
EIy 00+Py=0, y(0)=0, y(L)= 0.

Here, EI is a constant modeling the in�exibility of the rod (E, known as Young's modulus, depends on the
material, and I depends on the shape of cross-sections (it is the area moment of inertia)).

In other words, y 00+�y=0, y(0)=0, y(L)= 0, with �= P

EI
.

The fact that there is no nonzero solution unless �=
¡ �n
L

�2
for some n= 1; 2; 3; :::, means that buckling can

only occur if P =
¡ �n
L

�2
EI. In particular, no buckling occurs for forces less than �2EI

L2
. This is known as the

critical load (or Euler load) of the rod.
Comment. This is a very simpli�ed model. In particular, it assumes that the de�ections are small. (Technically,
the buckled rod in our model is longer than L; of course, that's not the case in practice.)
https://en.wikipedia.org/wiki/Euler%27s_critical_load
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The heat equation

We wish to describe one-dimensional heat �ow.
Comment. If this sounds very specialized, it might help to know that the heat equation is also used, for instance,
in probability (Brownian motion), �nancial math (Black-Scholes), or chemical processes (di�usion equation).

Let u(x; t) describe the temperature at time t at position x.

If we model a heated rod of length L, then x2 [0; L].
Notation. u(x; t) depends on two variables. When taking derivatives, we will use the notations ut=

@

@t
u and

uxx=
@2

@x2
u for �rst and higher derivatives.

Experience tells us that heat �ows from warmer to cooler areas and has an averaging e�ect.

Make a sketch of some temperature pro�le u(x; t) for �xed t.

As t increases, we expect maxima (where uxx < 0) of that pro�le to �atten out (which means
that ut<0); similarly, minima (where uxx>0) should go up (meaning that ut>0). The simplest
relationship between ut and uxx which conforms with our expectation is ut= kuxx, with k > 0.

(heat equation)

ut= kuxx

Note that the heat equation is a linear and homogeneous partial di�erential equation.
In particular, the principle of superposition holds: if u1 and u2 solve the heat equation, then so does c1u1+ c2u2.

Higher dimensions. In higher dimensions, the heat equation takes the form ut = k(uxx + uyy) or ut =
k(uxx+uyy+uzz). Note that �u=uxx+uyy+uzz is the Laplace operator you may know from Calculus III.

The Laplacian �u is also often written as �u=r2u. The operator r= (@/@x; @/@y) is pronounced �nabla�
(Greek for a certain harp) or �del� (Persian for heart), and r2 is short for the inner product r �r.

Example 126. Note that u(x; t)= ax+ b solves the heat equation.

Example 127. To get a feeling, let us �nd some other solutions to ut=uxx (for starters, k=1).

� For instance, u(x; t)= etex is a solution.
[Not a very interesting one for modeling heat �ow because it increases exponentially in time.]

� ::: to be continued :::
Can you �nd further solutions?
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