
Sketch of Lecture 19 Thu, 10/31/2019

Let us revisit the inhomogeneous DE my 00+ky=F (t) (which describes, for instance, the motion
of a mass m on a spring with spring constant k under the in�uence of an external force F (t)).

We will solve the DE, for periodic forces F (t), by using the Fourier series for F (t). The same
approach works likewise for linear equations of higher order, or even systems of equations.

Example 118. Find a particular solution of 2y 00 + 32y = F (t), with F (t) =
�

10 if t2 (0; 1)
¡10 if t2 (1; 2) ,

extended 2-periodically.

Solution.

� From earlier, we already know F (t)= 10
P

n odd
4

�n
sin(�nt).

� We next solve the equation 2y 00 + 32y = sin(�nt) for n = 1; 3; 5; :::. First, we note that the external
frequency is �n, which is never equal to the natural frequency !0 = 4. Hence, there exists a particular
solution of the form yp(t)=A cos(�nt)+B sin(�nt). To determine the coe�cients A;B, we plug into
the DE. Noting that yp00=¡�2n2 yp (why?!), we get

2yp
00+ 32yp=(32¡ 2�2n2)(A cos(�nt) +B sin(�nt))=

!
sin(�nt):

We conclude A=0 and B=
1

32¡ 2�2n2
, so that yp(t)=

sin(�nt)
32¡ 2�2n2

.

� We combine the particular solutions found in the previous step, to see that

2y 00+ 32y= 10
X
n=1
n odd

1
4
�n

sin(�nt) is solved by yp= 10
X
n=1
n odd

1
4
�n

sin(�nt)
32¡ 2�2n2 :

Example 119. Find a particular solution of 2y 00+32y=F (t), with F (t) the 2�-periodic function
such that F (t)= 10t for t2 (¡�; �).
Solution.

� The Fourier series of F (t) is F (t)=
P

n=1
1 (¡1)n+1 20

n
sin(nt). [Exercise!]

� We next solve the equation 2y 00+32y= sin(nt) for n=1;2;3; :::. Note, however, that resonance occurs
for n = 4, so we need to treat that case separately. If n =/ 4 then we �nd, as in the previous example,
that yp(t)=

sin(nt)
32¡ 2n2 . [See how this fails for n=4!]

For 2y 00+ 32y= sin(4t), we begin with yp=At cos(4t) +Bt sin(4t). Then yp
0 = (A+4Bt)cos(4t) +

(B ¡ 4At)sin(4t), and yp
00= (8B ¡ 16At)cos(4t) + (¡8A ¡ 16Bt)sin(4t). Plugging into the DE, we

get 2yp00+32yp=16B cos(4t)¡16A sin(4t)=
!
sin(4t), and thusB=0, A=¡ 1

16
. So, yp=¡ 1

16
tcos(4t).

� We combine the particular solutions to get that our DE

2y 00+ 32y=¡5sin(4t) +
X
n=1
n=/4

1
(¡1)n+1 20

n
sin(nt)

is solved by

yp(t)=
5
16
t cos(4t)+

X
n=1
n=/ 4

1
(¡1)n+1 20

n
sin(nt)
32¡ 2n2 :

As in the previous example, this solution cannot really be simpli�ed. Make some plots to appreciate the
dominating character of the term resulting from resonance!
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Fourier cosine series and Fourier sine series

Suppose we have a function f(t) which is de�ned on a �nite interval [0; L]. Depending on the
kind of application, we can extend f(t) to a periodic function in three natural ways; in each case,
we can then compute a Fourier series for f(t) (which will agree with f(t) on [0; L]).

Comment. Here, we do not worry about the de�nition of f(t) at speci�c individual points like t=0 and t=L,
or at jump discontinuities. Recall that, at a discontinuity, a Fourier series takes the average value.

(a) We can extend f(t) to an L-periodic function.

In that case, we obtain the Fourier series f(t)= a0
2
+

X
n=1

1 �
ancos

�
2�nt
L

�
+ bnsin

�
2�nt
L

��
.

(b) We can extend f(t) to an even 2L-periodic function.

In that case, we obtain the Fourier cosine series f(t)= a~0
2
+

X
n=1

1
a~ncos

�
�nt
L

�
.

(c) We can extend f(t) to an odd 2L-periodic function.

In that case, we obtain the Fourier sine series f(t)=
X
n=1

1
b~nsin

�
�nt
L

�
.

Example 120. Consider the function f(t)= 4¡ t2, de�ned for t2 [0; 2].

(a) Sketch the 2-periodic extension of f(t).

(b) Sketch the 4-periodic even extension of f(t).

(c) Sketch the 4-periodic odd extension of f(t).

Solution. The 2-periodic extension as well as the 4-periodic even extension:

-8 -6 -4 -2 0 2 4 6 8

2

4

-8 -6 -4 -2 0 2 4 6 8

2

4

The 4-periodic odd extension:

-8 -6 -4 -2 2 4 6 8

-4

-2

2

4
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Boundary value problems and partial di�erential equations

Endpoint problems and eigenvalues

Example 121. The IVP (initial value problem) y 00+4y=0, y(0)=0, y 0(0)=0 has the unique
solution y(x)= 0.

Initial value problems are often used when the problem depends on time. Then, y(0) and y 0(0)
describe the initial con�guration at t=0.

For problems which instead depend on spatial variables, such as position, it may be natural to
specify values at positions on the boundary (for instance, if y(x) describes the steady-state
temperature of a rod at position x, we might know the temperature at the two end points).

The next two examples illustrate that such boundary value problem may or may not have unique
solutions.

Example 122. The BVP (boundary value problem) y 00 + 4y = 0, y(0) = 0, y(1) = 0 has the
unique solution y(x)= 0.

We know that the general solution to the DE is y(x)=A cos(2x)+B sin(2x). The boundary conditions imply

y(0)=A=
!
0 and, already using that A=0, y(1)=B sin(2)=

!
0 shows that B=0 as well.

Example 123. The BVP y 00+�2y=0, y(0)=0, y(1)=0 is solved by y(x)=B sin(�x) for any
value B.
This time, the general solution to the DE is y(x) = A cos(�x) + B sin(�x). The boundary conditions imply

y(0)=A=
!
0 and, using that A=0, y(1)=B sin(�)=

!
0. This second condition true for any B.
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