Sketch of Lecture 16 Tue, 10/22/2019

Review. Theorem 88: If x( is an ordinary point of a linear IVP, then it is guaranteed to have a
power series solution y(z) =" an(z —x0)"

Moreover, its radius of convergence is at least the distance between z and the closest singular point.

Example 92 Find a minimum value for the radius of convergence of a power series solution to
(22 +4)y" — 3zy’ —i—“_ly:Oat:c:Q.
Solution. The singular points are t =427, —1. Hence, x =2 is an ordinary point of the DE and the distance to the
nearest singular point is |2 — 27| = 1/22 + 22 = /8 (the distances are |2 — (—1)| =3, |2 — 2i| =2 — (—21)| =+/8).

By Theorem 88, the DE has power series solutions about x = 2 with radius of convergence at least /8.

Example 93. (caution!) Theorem 88 only holds for linear DEs! For nonlinear DEs, it is very hard
to predict whether there is a power series solution and what its radius of convergence is.

Consider, for instance, the nonlinear DE y’—|—2:cy2:0.

Its coefficients have no singularities.
oo

ﬁ: E (—1)"x2" (check that!), which has radius of convergence 1.
x
n=0

On the other hand. y(z) also solves the linear DE (1 + 22)y’ + 22y = 0. Note how the DE has singular points
for x = +4. This allows us to predict that y(x) must have a power series with radius of convergence at least 1.

A solution to this DE is y(z) =

Example 94. (Bessel functions) Consider the DE x%y” + 2y’ + 2%y = 0. Derive a recursive

description of a power series solutions y(x) at x =0.

Caution! Note that 2 =0 is a singular point (the only) of the DE. Theorem 88 therefore does not guarantee
a basis of power series solutions. [However, z = 0 is what is called a regular singular point; for these, we are
guaranteed one power series solution, as well as additional solutions expressed using logarithms and power series.]

Comment. We could divide the DE by x (but that wouldn’t really change the computations below). The reason
for not dividing that x is that this DE is the special case a =0 of the Bessel equation z2y"’ +xy’ + (m — a2)y—
0 (for which no such dividing is possible).

Solution. (plug in power series) Let us spell out power series for z2y, zy’, 2y’ starting with y(x)= Z anx™:

n=0
E anrt2= E Ay —ox™
:E nanpx™ (because y'(x E nanpx™
fopn

o0 o0
z2y’(x) = Z n(n —1)apxz™ (because y"'(x) = Z n(n —1a,xz™ ?)
n=2 [e%) o) [e%) n=2
Hence, the DE becomes Z n(n—1apz™+ Z nanpx™ + Z an —2x™ =0. We compare coefficients of x™:
n=2

e n=1: a;=0

e n>2: n(n—1)ay+nay,+ a,—2=0, which simplifies to na,, = —a, —2.

It follows that as, = E; a0 and azn41=0.
Observation. The fact that we found a; = O reflects the fact that we cannot represent the general solution

through power series alone.

o0 n 2
Comment. If ag=1, the function we found is a Bessel function and denoted as Jo(z Z '12) ( ) n.
n!
n=0

The more general Bessel functions .J, () are solutions to the DE z%y" + zy’ + (22 — a?)y =0.
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Example 95. (caution!) Consider the linear DE 2%y’ =y — x. Does it have a convergent power
series solution at x =07

Important note. The DE 22y’ =y — x has the singular point = =0. Hence, Theorem 88 does not apply.

oo
Solution. Let us look for a power series solution y(z) = Z anpx™.

oo oo oo n=0
2%y (x) =22 E napx™ 1= E napx™tl= E (n—1Dap_1z™
n=1 n=1 n=2

o0 o0
Hence, 2y’ =y — = becomes Z (n—1ap—12"= Z anx™ — x. We compare coefficients of =™:

n=2 n=0

e n=0: ap=0.
e n=1: 0=a;—1,sothata;=1.

e n>2: (n—1)ayn_1=ay, from which it follows that a,=(n —1)a,_1=(n—1)(n —2)a, _2="-=
(n—Dlag=(Mnm-1).
o0
Hence the DE has the “formal” power series solution y(z) = Z (n—1)lz™.
n=1
However, that series is divergent for all x  0; that is, the radius of convergence is 0.

| Inverses of power series

Example 96. (extra) For each of the following compute the first few terms of the power series.

(a) (ag+aiz+ax®+...)(bo + byw + box?...)

1
ao+ a1z + asr?+ ...

(b)

1

(c)
1+x+%x2+%x3+...

Solution.
(a) aobo + (agb1 + a1bo)x + (aobe + a1by + azbg)x? + O(z3)

(b) The answer is bg + by + ... with the property that (ag + a1z + agz? + ...)(bo + by + box?...) = 1.
By the first part, and comparing coefficients, agbg =1, agb1 + a1bgp =0, agb2 + a1b1 4+ a2bg =0, ...

1 o 1 __a _ 1 _a%_az
Hence, b() = a_[)’ bl = _a_o(albo) = a_?)' bQ = a—[)(albl + agbo) = a_g a—%.
(c) T ! T :1—x+lw2—lx3+...
l+z+ o2+ cad+ .. 2 6
Comment. This reflects %:eﬂ”.
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Likewise, we could compute the first few terms of the power series of, say,

1—2—2%
However, it turns out that we can describe all terms in that power series:
. . . . 1
Example 97. Derive a recursive description of the power series for y(x)= F—
—Xr—X

o0
Solution. Write y(z) = Z anx™. Then
n=0

K

oo oo o0
1=(1—xz—2?) E anx™ = anxr™ — E apz™tl— E anz™t?2
n=0 n=0 n=0

n=0
o0 o0 o0

= E anm"—g an,lm"—g Ay —ox™.
n=0 n=1 n=2

We compare coefficients of z™:

e n=1:. 0=aj—ag, sothat a1 =ag=1.
e n>2. 0=a,—an—1—an,—_o or, equivalently, a, =an—1+ an, —o.

This is the recursive description of the Fibonacci numbers F),! In particular a,, = F),.
The first few terms. % =14+ax+222 4323+ 524+ 825+ 1326 + ...
—z—
Comment. The function y(z) is said to be a generating function for the Fibonacci numbers.

Challenge. Can you rederive Binet's formula from partial fractions and the geometric series?
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