Sketch of Lecture 11 Tue, 9/24/2019

Example 64. Let p(D)= D"+ ¢, _1D™ '+ ...+ c1D + co. Write the DE p(D)y =0 as a
system of (first-order) differential equations.

Solution. Write yj, = Dky for k=0,1,....,m —1.

vo=11
Then, p(D)y =0 translates into the first-order system Y1=192
Yr—1=—Cm—1Ym—1— -.- — C1Y1 — COYO
[ 0 1 0 - 0 ]
0 o 1 - 0
In matrix form, this is y' = : : A : Y.
0 0O 0 - 1
—Co —C1 v o —Cm—1

Comment. This is called the companion matrix of the polynomial p(D). Can you see why the characteristic
polynomial of the matrix must be (up to possibly a sign) equal to p(D)?

As expected, this works exactly the same way for recurrence equations:

Example 65. (extra) Let p(N)=N"+c,, _1N™ 14 ...+ c1N +cy. Write the RE p(N)a,, =0
as a system of (first-order) recurrences.

Solution. Write aslk) :Nkan:an_,_k for k=0,1,...,m — 1.
(0) (1)

Apt1 =0y
PACORRPNCY
Then, p(N)a, =0 translates into the first-order system :”Jrl n )
a,(ﬁrzl) = —cm_la,(lm_l) — = clag) — coa,(lo)
a© [ O 1 0 - 0 w
n
(1) o 0 1 - 0
Leta,= aT} . Then, in matrix form, the RE is: a,,+1= Ma, with M = : : A :
’ 0 0O 0 - 1
(m—1)
a,, —Ccop —C1 =+ v —Cm—1

To solve y’ = My, determine the eigenvectors of M.

e Each \-eigenvector v provides a solution: y(z) = ve**

e If there is enough eigenvectors, these combine to the general solution.

Comment. If there is not enough eigenvectors, then we know what to do as well (at least in principle): instead
of looking only for solutions of the type y(z) = ve*, we also need to look for solutions of the type y(z) =
(v + w)e’\’:. Note that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Example 66. Let M:{ j 2 }

(a) Determine the general solution to y’'= My.
(b) Determine a fundamental matrix solution to ¥y’ = My.
(c) Compute M.

(d) Solve the initial value problem y’= My with y(0) :[ 1 }
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Solution.

(a) We determine the eigenvectors of M. The characteristic polynomial is:
det(M—AI):det([ Sl 6 ]):(—1 CNA =N +6=22 -3 A+2=(\—1)(A—2)
Hence, the eigenvalues are A=1 and A =2.

e To find an eigenvector v for A =1, we need to solve [ :? g }'U:O.

Hence, v :{ :13 } is an eigenvector for A =1.

e To find an eigenvector v for A =2, we need to solve [ ::13 g }'U:O.

Hence, v :{ ? } is an eigenvector for \ = 2.

Hence, the general solution is Cl{ :13 }ez + Cg{ ? }CQI.

x 2z
(b) The corresponding fundamental matrix solution is ® :{ 3; 2:236 }

(c) Note that ®(0) :{ :13 ? }, so that ®(0) ! :{ _11 _32 } It follows that

x 2x _ x 2x __pox 2x
eMx:q)(x)Q(O)_1:|:3e % M 1 2}:{363 22 _Ge” + Be }

e® 621 -1 3 et — 621 —2e® + 3629:

i i Mzl 1] | 3er—2e20 —ger 4 6e2e 17 _ | —3ev+4ae
(d) The solution to the IVP is y(z) =e [ N }—{ oo ey gee M N }—{ et gere }

Note. If we hadn't already computed e?#, we would use the general solution and solve for the appropriate
values of C; and C5. Do it that way as well!

Theorem 67. Let M be n x n. Then the matrix exponential satisfies

eM:I-I—M-l—%MQ-I—%M?’-I—...

Proof. Define ®(z)=1+ Mz + %M2m2 + %M3x3 + ..

d 1 1

! — 2,2 3,3

P'(x) = I+Mm+2!M x +—3!M 2+ ...
_—O+M+M2m+%M3x2+..._—M<I>(m).

Clearly, ®(0) = I. Therefore, ®(x) is the fundamental matrix solution to y' = My, y(0) =1.

Mz Mz 0

But that's precisely how we defined e''* earlier. It follows that ®(z) =e

(exponential function) e® is the unique solution to ' =y, y(0) =1.

From here, it follows that e* =1 -I—x-l—‘;—?-l—z—?-l—

The latter is the Taylor series for ¢” at x =0 that we have seen in Calculus II.

Important note. We can actually construct this infinite sum directly from y’ =1y and y(0) =1.

Indeed, observe how each term, when differentiated, produces the term before it. For instance, %2_7 :z—?.
100
Example 68. If A:[ g (5) } then Aloo:[ 20 51000 }
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Example 69. IfA:[g g},then eA:[(l) (”—l—[g g}—l—%[f 5?2}—1—---:{62 0 ]

Clearly, this works to obtain e” for any diagonal matrix D.

: _|2x O Az _ | 1 0 2z 0 11 @22 o e o
In parUcuIar,forAx—[ o Sx},e —[O 1}-|—[ 0 5x}+2!|: 0 (Sx)21|+ —[ s,z].

Example 70. Let M:[ _81 i }

(a) Determine the general solution to y’'= My.
(b) Determine a fundamental matrix solution to y’' = My.
(c) Compute M.

(d) Solve the initial value problem y’= My with y(0) :[ (1) }

Solution.

(a) We determine the eigenvectors of M. The characteristic polynomial is:

det(M—AI):det([ s-h Y }):(8—)\)(4—>\)—|—4:>\2—12>\—|—36:()\—6)(A—6)

Hence, the eigenvalues are A =6, 6 (meaning that 6 has multiplicity 2).

e To find eigenvectors v for A =6, we need to solve [ _21 _42 ]’U:O.

Hence, v :{ _12 } is an eigenvector for A =6. There is no independent second eigenvector.

e We therefore search for a solution of the form y(z) = (vx + w)e*® with A =6.
!
y'(z) = vz 4+ Aw + v)er® = My = (Mvz + Mw)e'®
Equating coefficients of x, we need \v = Mv and Aw + v = Mw.

Hence, v must be an eigenvector (which we already computed); we choose v :{ 712 }

[Note that any multiple of y(z) will be another solution, so it doesn't matter which multiple of [ _12 } we choose.]
Aw 4+ v = Mw or (M — \)w = v then becomes [ _21 _42 }w:{ _12 }

One solution is w :|: Bl ] [We only need one.]

Hence, the general solution is Cl{ 712 }eﬁx + CQ([ 712 T —1—[ Bl Der.

(b) The corresponding fundamental matrix solution is ® = —2e% —(2z + 1)e®r |
66‘1' xeG.L

(c) Note that ®(0) :{ 2 ] so that ®(0) ! :{ oL ] It follows that

eMzch@)@(o)l:{—?e“ —(2w+1>e“M 0 1 }:

6630 xeﬁx -1 =2

(2 + 1)eb® 4 €57
—xef (2 —1)eb

—zxeb® —(2z — 1) eb® —zxeb®

(d) The solution to the IVP is y(z) = eM”?{ (1) } :{ (2x + 1)e’” 4z b M (1) } :{ (2z +1)e }
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