Sketch of Lecture 7 Tue, 9/10/2019

Solving linear recurrences with constant coefficients

| Motivation: Fibonacci numbers

The numbers 0,1,1,2,3,5,8,13,21, 34, ... are called Fibonacci numbers.
They are defined by the recursion F,, 1 =F,,+ F,,_1 and F,=0, F1=1.

How fast are they growing?

Have a look at ratios of Fibonacci numbers: z:2, 3 1.5, - 1.6, 18 1.625, 21 1.615, 34 _ 1.619, ...
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These ratios approach the golden ratio p = +2 ° ~1.618...

In other words, it appears that lim Fntr 1+2\/5. This indeed follows from Theorem 47 below.
n— oo n

We can derive all of that using the same ideas as in the case of linear differential equations. The
crucial observation that we can write the recursion in operator form:

Foi1=F,+F,_1 isequivalentto (N?—N —1)F,=0.

Here, N is the shift operator: Na, =an41.

Comment. Recurrence equations are discrete analogs of differential equations.
For instance, recall that f/(z)~ f(z+1) — f(z) so that D is approximated by N — 1.

Example 44. Find the general solution to the recursion a,,4+1 = T7a,,.

Solution. Note that a,=7a, _1=7-Tap_2="---="T"ay.
Hence, the general solution is a,, =C - 7™.
Comment. This is analogous to y’ = 7y having the general solution y(z) = Ce’™.

Example 45. Find the general solution to the recursion a,,+9=a, 41+ 6a,.

Solution. The recursion can be written as p(N)a,, =0 where p(N)=N? - N — 6= (N — 3)(N +2).

Since (N — 3)a,, =0 has solution a,, = C'- 3", and since (N + 2)a,, =0 has solution a,, =C'- (—2)" (compare
previous example), we conclude that the general solution is a,, = C7 - 3" + Cq - (—2)™.

Comment. This must indeed be the general solution, because the two degrees of freedom C1, C5 allow us to

match any initial conditions ag= A, a1 = B: the two equations C'1 + C2 = A and 3C'; — 2C5 = B in matrix form

are [ :1)’ _12 M g; } :{ g ] which always has a (unique) solution because det([ :1)’ _12 D =—-5%#0.

Example 46. Find the general solution to the recursion a,, 13 =2a,4+2+ Gni1 — 2a,.

Solution. The recursion can be written as p(N)a,, =0 where p(N) = N3 —2N? — N + 2 has roots 2,1, —1.
Hence, the general solution is a,, =C1- 2"+ Ca 4+ C3- (—1)™.
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Theorem 47. (Binet’s formula) F,, = %[ < - +2\/5 )n - ( - _2\/3 )n]

Proof. The recursion Fy, 41 = F, + F}, _1 can be written as p(N)a, =0 where p(N) = N2 _ N —1 has roots

A1 :# ~1.618, M= 1 _2\/3 ~ —0.618.

Hence, F,, =C1 - AT 4+ C2- A5 and we only need to figure out the two unknowns C, C2. We can do that using

| i
the two initial conditions: Fy=C1 +Co =0, Fy = C1- Y2 4 0y LBy,
Solving, we find C; :% and Cy = —% so that, in conclusion, Fn:%()\? — AB), as claimed. O

Comment. For large n, Fj, &~ —— A7 (because A5 becomes very small). In fact, F,, =round L(H”/g)n
- g r A NG 1 2 ry . v NG 2 .

Back to the quotient of Fibonacci numbers. In particular, because A7 dominates A5, it is now transparent

that the ratios % approach \; :%% 1.618. To be precise, note that
L (an+l 1 1= o 22)"
Fni1_ 5271 2 oAt oagtt A Ay nogo A —0_
Fn  _Lon_am AT\ _(A_)" 1—-o F
n \/g( 1 %) 1 x,

In fact, it follows from Ao < O that the ratios % approach \p in the alternating fashion that we observed

numerically earlier. Can you see that?

Example 48. Find the general solution to the recursion a,,4+2=4a,+1 — 4a,.
Solution. The recursion can be written as p(N)a,, =0 where p(N) = N? — 4N + 4 has roots 2, 2.
So one solution is 2™ and, from our discussion of DEs, it is probably not surprising that a second solution is - 2.
Hence, the general solution is a,, =C7 -2+ Co-n-2" = (C1 + Can) - 2™.
Comment. This is analogous to (D — 2)%y’ =0 having the general solution y(z) = (C1 + Cox)e?®.
Check! Let's check that a,, =n - 2" indeed satisfies the recursion (N — 2)2a,, =0.
(N —2)n-2"=(n+1)2"+t1 —2n .27 =27+1 5o that (N —2)%n-2"=(N —2)2"t1=0.

Combined, we obtain the following analog of Theorem 25 for recurrence equations (RE):

Solutions to such recurrences are called C-finite sequences.

Theorem 49. Consider the homogeneous linear RE with constant coefficients p(N)a,, =0.

e If 7 is a root of the characteristic polynomial and if k is its multiplicity, then %k (inde-
pendent) solutions of the RE are given by n/r™ for j=0,1,....k — 1.

e Combining these solutions for all roots, gives the general solution.

Qn+1

- equals the largest root r that contributes to a,.

Moreover. lim,, o

Example 50. (homework) Consider the sequence a,, defined by a,,+2=2a,,+1+ 4a, and ap=0,

. . a
a; = 1. Determine lim —“t1

n—oo Ap

First few terms of sequence. 0,1, 2,8, 24, 80, 256, 832, ...

These are actually related to Fibonacci numbers. Indeed, a,, = 2™ ~'F},,. Can you prove this directly from the
recursions? Alternatively, this follows from the Binet formulas.

Solution. Proceeding as for the Fibonacci numbers, we find lim ntl g + /5~ 3.23607.
n—oo anp

A+vB)"— (1 -5

25 ’

Comment. With just a little more work, we find the Binet formula a,, =
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