
Sketch of Lecture 7 Tue, 9/10/2019

Solving linear recurrences with constant coe�cients

Motivation: Fibonacci numbers

The numbers 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; ::: are called Fibonacci numbers.

They are de�ned by the recursion Fn+1=Fn+Fn¡1 and F0=0, F1=1.

How fast are they growing?
Have a look at ratios of Fibonacci numbers: 2

1
=2, 3

2
= 1.5, 5

3
= 1.6, 13

8
= 1.625, 21

13
= 1.615, 34

21
= 1.619, :::

These ratios approach the golden ratio '=
1+ 5

p

2
= 1.618:::

In other words, it appears that lim
n!1

Fn+1
Fn

=
1+ 5

p

2
. This indeed follows from Theorem 47 below.

We can derive all of that using the same ideas as in the case of linear di�erential equations. The
crucial observation that we can write the recursion in operator form:

Fn+1=Fn+Fn¡1 is equivalent to (N2¡N ¡ 1)Fn=0.

Here, N is the shift operator: Nan= an+1.

Comment. Recurrence equations are discrete analogs of di�erential equations.
For instance, recall that f 0(x)� f(x+1)¡ f(x) so that D is approximated by N ¡ 1.

Example 44. Find the general solution to the recursion an+1=7an.

Solution. Note that an=7an¡1=7 � 7an¡2= ���=7na0.
Hence, the general solution is an=C � 7n.
Comment. This is analogous to y 0=7y having the general solution y(x)=Ce7x.

Example 45. Find the general solution to the recursion an+2= an+1+6an.

Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 6= (N ¡ 3)(N +2).
Since (N ¡ 3)an=0 has solution an=C � 3n, and since (N +2)an=0 has solution an=C � (¡2)n (compare
previous example), we conclude that the general solution is an=C1 � 3n+C2 � (¡2)n.
Comment. This must indeed be the general solution, because the two degrees of freedom C1; C2 allow us to
match any initial conditions a0=A, a1=B: the two equations C1+C2=A and 3C1¡2C2=B in matrix form

are
�
1 1
3 ¡2

��
C1

C2

�
=

�
A
B

�
, which always has a (unique) solution because det

��
1 1
3 ¡2

��
=¡5=/ 0.

Example 46. Find the general solution to the recursion an+3=2an+2+ an+1¡ 2an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N3¡ 2N2¡N +2 has roots 2; 1;¡1.
Hence, the general solution is an=C1 � 2n+C2+C3 � (¡1)n.
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Theorem 47. (Binet's formula) Fn=
1

5
p

h�
1+ 5

p

2

�n
¡
�
1¡ 5

p

2

�ni
Proof. The recursion Fn+1=Fn+Fn¡1 can be written as p(N)an=0 where p(N)=N2¡N ¡ 1 has roots

�1=
1+ 5

p

2
� 1.618; �2=

1¡ 5
p

2
�¡0.618:

Hence, Fn=C1 ��1n+C2 ��2n and we only need to �gure out the two unknowns C1, C2. We can do that using

the two initial conditions: F0=C1+C2=
!
0, F1=C1 �

1+ 5
p

2
+C2 �

1¡ 5
p

2
=
!
1.

Solving, we �nd C1=
1

5
p and C2=¡ 1

5
p so that, in conclusion, Fn=

1

5
p (�1

n¡ �2
n), as claimed. �

Comment. For large n, Fn� 1

5
p �1

n (because �2n becomes very small). In fact, Fn= round
�

1

5
p

�
1+ 5

p

2

�n�
.

Back to the quotient of Fibonacci numbers. In particular, because �1n dominates �2n, it is now transparent
that the ratios Fn+1

Fn
approach �1=

1+ 5
p

2
� 1.618. To be precise, note that

Fn+1
Fn

=

1

5
p (�1

n+1¡ �2
n+1)

1

5
p (�1

n¡ �2
n)

=
�1
n+1¡�2

n+1

�1
n¡�2n

=
�1¡�2

�
�2
�1

�n
1¡

�
�2
�1

�n ¡!n!1 �1¡ 0
1¡ 0 = �1:

In fact, it follows from �2 < 0 that the ratios Fn+1
Fn

approach �1 in the alternating fashion that we observed
numerically earlier. Can you see that?

Example 48. Find the general solution to the recursion an+2=4an+1¡ 4an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡ 4N +4 has roots 2; 2.
So one solution is 2n and, from our discussion of DEs, it is probably not surprising that a second solution is n �2n.
Hence, the general solution is an=C1 � 2n+C2 �n � 2n= (C1+C2n) � 2n.
Comment. This is analogous to (D¡ 2)2y 0=0 having the general solution y(x)= (C1+C2x)e

2x.
Check! Let's check that an=n � 2n indeed satis�es the recursion (N ¡ 2)2an=0.

(N ¡ 2)n � 2n= (n+1)2n+1¡ 2n � 2n=2n+1, so that (N ¡ 2)2n � 2n= (N ¡ 2)2n+1=0.

Combined, we obtain the following analog of Theorem 25 for recurrence equations (RE):
Solutions to such recurrences are called C-�nite sequences.

Theorem 49. Consider the homogeneous linear RE with constant coe�cients p(N)an=0.

� If r is a root of the characteristic polynomial and if k is its multiplicity, then k (inde-
pendent) solutions of the RE are given by njrn for j=0; 1; :::; k¡ 1.

� Combining these solutions for all roots, gives the general solution.

Moreover. limn!1
an+1
an

equals the largest root r that contributes to an.

Example 50. (homework) Consider the sequence an de�ned by an+2=2an+1+4an and a0=0,

a1=1. Determine lim
n!1

an+1
an

.

First few terms of sequence. 0; 1; 2; 8; 24;80; 256; 832; :::
These are actually related to Fibonacci numbers. Indeed, an = 2n¡1Fn. Can you prove this directly from the
recursions? Alternatively, this follows from the Binet formulas.

Solution. Proceeding as for the Fibonacci numbers, we �nd lim
n!1

an+1
an

=1+ 5
p
� 3.23607.

Comment. With just a little more work, we �nd the Binet formula an=
(1+ 5

p
)n¡ (1¡ 5

p
)n

2 5
p .

Armin Straub
straub@southalabama.edu

14


