Please print your name:

Reminder. No notes, calculators or tools of any kind will be permitted on the midterm exam.

Problem 1. Let L be a linear differential operator of order 4 with constant real coefficients. Suppose that 3 + 7i is a repeated characteristic root of L.

- (a) What is the general solution to Ly = 0?
- (b) Write down the simplest form of a particular solution y_p of the DE $Ly = 7x^2e^{3x}$ with undetermined coefficients.
- (c) Write down the simplest form of a particular solution y_p of the DE $Ly = e^{3x} \sin(7x) + 3x^2$ with undetermined coefficients.

Problem 2.

- (a) Consider a homogeneous linear differential equation with constant real coefficients which has order 8. Suppose $y(x) = 7x 2x^2 e^{3x} \sin(5x)$ is a solution. Write down the general solution.
- (b) Consider a homogeneous linear differential equation with constant real coefficients which has order 8. Suppose $y(x) = 2x e^{3x} + x \cos(5x) 5\sin(x)$ is a solution. Write down the general solution.
- (c) Write down a homogeneous linear differential equation satisfied by $y(x) = 1 5x^2e^{-2x}$. Here, and elsewhere, you can use the operator D to write the DE. No need to simplify, any form is acceptable.
- (d) Write down a homogeneous linear differential equation satisfied by $y(x) = 2 3x \sinh(4x) (7x^2 + 5)e^x$.
- (e) Let y_p be any solution to the inhomogeneous linear differential equation $y'' 9y = 4xe^x 5e^{2x}$. Find a homogeneous linear differential equation which y_p solves.

Problem 3.

- (a) Determine the general solution of the system $\begin{array}{cc} y_1' &=& y_1 6y_2 \\ y_2' &=& y_1 4y_2 \end{array}$
- (b) Solve the IVP $\begin{array}{ccc} y_1' &=& y_1 6y_2 \\ y_2' &=& y_1 4y_2 \end{array}$ with $\begin{array}{ccc} y_1(0) &=& 4 \\ y_2(0) &=& 1 \end{array}$.
- (c) Determine a particular solution to $\begin{array}{cc} y_1' &= y_1 6y_2 \\ y_2' &= y_1 4y_2 2e^{3x} \end{array}$
- (d) Determine the general solution to $\begin{array}{cc} y_1' &=& y_1-6y_2\\ y_2' &=& y_1-4y_2-2e^{3x} \end{array}.$

Problem 4.

- (a) Write the (third-order) differential equation $y''' + 2y'' 4y' + 5y = 2\sin(x)$ as a system of (first-order) differential equations.
- (b) Consider the following system of (second-order) initial value problems:

$$\begin{array}{ll} y_1''=5y_1'+2y_2'+e^{2x}\\ y_2''=7y_1-3y_2-3e^x \end{array} \hspace{0.5cm} y_1(0)=1, \hspace{0.5cm} y_1'(0)=4, \hspace{0.5cm} y_2(0)=0, \hspace{0.5cm} y_2'(0)=-1 \end{array}$$

Write it as a first-order initial value problem in the form y' = My + f, y(0) = c.

Problem 5. The mixtures in three tanks T_1, T_2, T_3 are kept uniform by stirring. Brine containing 2 lb of salt per gallon enters the first tank at a rate of 15 gal/min. Mixed solution from T_1 is pumped into T_2 at a rate of 10 gal/min and from T_2 into T_3 at a rate of 10 gal/min. Each tank initially contains 10 gal of pure water. Denote by $y_i(t)$ the amount (in pounds) of salt in tank T_i at time t (in minutes). Derive a system of linear differential equations for the y_i , including initial conditions.

Problem 6.

- (a) What is the period and the amplitude of $3\cos(7t) 5\sin(7t)$?
- (b) Assume that the angle $\theta(t)$ of a swinging pendulum is described by $\theta'' + 4\theta = 0$. Suppose $\theta(0) = \frac{3}{10}$ and $\theta'(0) = -\frac{4}{5}$. What is the period and the amplitude of the resulting oscillations?
- (c) The position y(t) of a certain mass on a spring is described by y'' + dy' + 5y = 0. For which value of d > 0 is the system underdamped? Critically damped? Overdamped?
- (d) A forced mechanical oscillator is described by $y'' + 2y' + y = 25\cos(2t)$. As $t \to \infty$, what is the period and the amplitude of the resulting oscillations?
- (e) The motion of a certain mass on a spring is described by $y'' + y' + \frac{1}{2}y = 5\sin(t)$ with y(0) = 2 and y'(0) = 0. Determine y(t). As $t \to \infty$, what are the period and amplitude of the oscillations?

Problem 7. The position y(t) of a certain mass on a spring is described by 2y'' + dy' + 3y = F(t).

- (a) Assume first that there is no external force, i.e. F(t) = 0. For which values of d is the system overdamped?
- (b) Now, $F(t) = \sin(4\omega t)$ and the system is undamped, i.e. d = 0. For which values of ω , if any, does resonance occur?
- (c) Now, $F(t) = 5\cos(\omega t) 2\sin(3\omega t)$ and the system is undamped, i.e. d = 0. For which values of ω , if any, does resonance occur?

Problem 8.

(a) Determine the general solution to $y'' - 4y' + 4y = 3e^{2x}$.

- (b) Determine the general solution to the differential equation $y''' y = e^x + 7$.
- (c) Determine the general solution y(x) to the differential equation $y^{(4)} + 6y''' + 13y'' = 2$. Express the solution using real numbers only.
- (d) Solve the initial value problem $y'' + 2y' + y = 2e^{2x} + e^{-x}$, y(0) = -1, y'(0) = 2.

Problem 9.

- (a) Consider the differential equation $x^2y'' 4xy' + 6y = 0$. Find all solutions of the form $y(x) = x^r$.
- (b) Determine the general solution of $x^2y'' 4xy' + 6y = x^3$.