We now revisit and finish Example 120:

Example 128. Consider two brine tanks. Initially, tank T_1 is filled with 24gal water containing 3lb salt, and tank T_2 with 9gal pure water.

- T_1 is being filled with 54gal/min water containing 0.5lb/gal salt.
- 72gal/min well-mixed solution flows out of T_1 into T_2 .
- 18gal/min well-mixed solution flows out of T_2 into T_1 .
- Finally, 54gal/min well-mixed solution is leaving T_2 .

How much salt is in the tanks after t minutes?

Solution. Note that the amount of water in each tank is constant because the flows balance each other.

Let $y_i(t)$ denote the amount of salt (in lb) in tank T_i after time t (in min). In the time interval $[t, t + \Delta t]$:

$$\Delta y_1 \approx 54 \cdot \frac{1}{2} \cdot \Delta t - 72 \cdot \frac{y_1}{24} \cdot \Delta t + 18 \cdot \frac{y_2}{9} \cdot \Delta t$$
, so $y_1' = 27 - 3y_1 + 2y_2$. Also, $y_1(0) = 3$.

 $\Delta y_2 \approx 72 \cdot \frac{y_1}{24} \cdot \Delta t - (18+54) \cdot \frac{y_2}{9} \cdot \Delta t, \text{ so } y_2' = 3y_1 - 8y_2. \text{ Also, } y_2(0) = 0.$ In conclusion, we have obtained the system of equations

$$y'_1 = -3y_1 + 2y_2 + 27,$$
 $y_1(0) = 3,$
 $y'_2 = 3y_1 - 8y_2,$ $y_2(0) = 0.$

One strategy to solve this system is to first combine the two DEs to get a single equation for y_1 .

- From the first DE, we get $y_2 = \frac{1}{2}y_1' + \frac{3}{2}y_1 \frac{27}{2}$.
- Using this in the second DE, we obtain $\left(\frac{1}{2}y_1'+\frac{3}{2}y_1-\frac{27}{2}\right)'=3y_1-8\left(\frac{1}{2}y_1'+\frac{3}{2}y_1-\frac{27}{2}\right)$. Simplified, this is $y_1''+11y_1'+18y_1=216$.
- We already have the initial condition $y_1(0) = 3$. We get a second one by combining $y_2 = \frac{1}{2}y_1' + \frac{3}{2}y_1 \frac{27}{2}$ with $y_2(0) = 0$ to get $0 = y_2(0) = \frac{1}{2}y_1'(0) + \frac{3}{2}y_1(0) \frac{27}{2} = \frac{1}{2}y_1'(0) 9$, which simplifies to $y_1'(0) = 18$.
- The IVP $y_1'' + 11y_1' + 18y_1 = 216$ with initial conditions $y_1(0) = 3$ and $y_1'(0) = 18$ is one that we can solve!
 - \circ The general solution of the corresponding homogeneous equation is $y_h = C_1 e^{-2t} + C_2 e^{-9t}$.
 - The simplest particular solution is of the form $y_p = C$. Plugging into the DE, we find $y_p = \frac{216}{18} = 12$.
 - $\begin{array}{ll} \bullet & \text{Hence, the general solution to the (inhomogeneous) DE is } y_1(x)=12+C_1e^{-2t}+C_2e^{-9t}. \\ & \text{We then use the initial conditions } y_1(0)=12+C_1+C_2\stackrel{!}{=}3, \ y_1'(0)=-2C_1-9C_2\stackrel{!}{=}18 \ \text{to find that for the unique solution of the IVP } C_1=-9, \ C_2=0. \end{array}$

The unique solution is $y_1(t) = 12 - 9e^{-2t}$.

• It follows that $y_2 = \frac{1}{2}y_1' + \frac{3}{2}y_1 - \frac{27}{2} = \frac{9}{2} - \frac{9}{2}e^{-2t}$.

Note. We could have found a particular solution with less calculations by observing (looking at the characteristic roots of the homogeneous DE and the inhomogeneous part) that there must be a solution of the form $\boldsymbol{y}_p(t) = \boldsymbol{a}$. We can then find \boldsymbol{a} by plugging into the differential equation. However, noticing that, for a constant solution, each tank has to have a constant concentration of 0.5lb/gal of salt, we find $\boldsymbol{y}_p(t) = \begin{bmatrix} 12\\4.5 \end{bmatrix}$.

Example 129. (extra) Three brine tanks T_1, T_2, T_3 .

 T_1 contains 20gal water with 10lb salt, T_2 40gal pure water, T_3 50gal water with 30lb salt.

 T_1 is filled with 10gal/min water with 2lb/gal salt. 10gal/min well-mixed solution flows out of T_1 into T_2 . Also, 10gal/min well-mixed solution flows out of T_2 into T_3 . Finally, 10gal/min well-mixed solution is leaving T_3 . How much salt is in the tanks after t minutes?

Solution. Let $y_i(t)$ denote the amount of salt (in lb) in tank T_i after time t (in min). In the time interval $[t, t + \Delta t]$:

$$\Delta y_1 \approx 10 \cdot 2 \cdot \Delta t - 10 \, \tfrac{y_1}{20} \cdot \Delta t \text{, so } y_1' = 20 - \tfrac{1}{2} y_1. \text{ Also, } y_1(0) = 10.$$

$$\Delta y_2 \approx 10 \cdot \frac{y_1}{20} \cdot \Delta t - 10 \frac{y_2}{40} \cdot \Delta t$$
, so $y_2' = \frac{1}{2} y_1 - \frac{1}{4} y_2$. Also, $y_2(0) = 0$.

$$\Delta y_3 \approx 10 \cdot \frac{y_2}{40} \cdot \Delta t - 10 \cdot \frac{y_3}{50} \cdot \Delta t$$
, so $y_3' = \frac{1}{4} y_2 - \frac{1}{5} y_3$. Also, $y_3(0) = 30$.

Using matrix notation and writing $\boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$, this is $\boldsymbol{y}' = \begin{bmatrix} -1/2 & 0 & 0 \\ 1/2 & -1/4 & 0 \\ 0 & 1/4 & -1/5 \end{bmatrix} \boldsymbol{y} + \begin{bmatrix} 20 \\ 0 \\ 0 \end{bmatrix}$, $\boldsymbol{y}(0) = \begin{bmatrix} 10 \\ 0 \\ 30 \end{bmatrix}$.

We can actually solve this IVP!

[Do it! Start by finding y_1 from the first DE, then move on to $y_2 \ldots$]

Here, we content ourselves with finding a particular solution (and ignoring the initial conditions). The method of undetermined coefficients tells us that there is a solution of the form $y_p(t) = a$. Of course, we can find a by plugging into the differential equation. However, noticing that, for a constant solution, each tank has to have a concentration of 2lb/gal of salt, we find $y_p = (40, 80, 100)$ without calculation.

Example 130. (April Fools!) Let a = b. Then $a^2 = ab$, so $a^2 + a^2 = a^2 + ab$ or $2a^2 = a^2 + ab$. Hence, $2a^2 - 2ab = a^2 - ab$ or $2(a^2 - ab) = a^2 - ab$. Cancelling, we arrive at 2 = 1.

[Can you see the foul but disguised division by zero?!]