Example 124. Consider the following system of (second-order) initial value problems:

$$\begin{array}{ll} y_1''=2y_1'-3y_2'+7y_2\\ y_2''=4y_1'+y_2'-5y_1 \end{array} \quad y_1(0)=2, \ y_1'(0)=3, \ y_2(0)=-1, \ y_2'(0)=1 \end{array}$$

Write it as a first-order initial value problem in the form y' = My, $y(0) = y_0$.

Solution. Introduce $y_3 = y'_1$ and $y_4 = y'_2$. Then, the given system translates into

$$\boldsymbol{y}' = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 7 & 2 & -3 \\ -5 & 0 & 4 & 1 \end{bmatrix} \boldsymbol{y}, \quad \boldsymbol{y}(0) = \begin{bmatrix} 2 \\ -1 \\ 3 \\ 1 \end{bmatrix}.$$

Example 125. Consider the following system of initial value problems:

$$\begin{array}{ll} y_1^{\prime\prime\prime} = 2y_1^{\prime\prime} - 3y_1 + 7y_2 \\ y_2^{\prime\prime} = 4y_1^{\prime} + y_2^{\prime} + 5y_2 \end{array} \qquad y_1(0) = 2, \ y_1^{\prime}(0) = 3, \ y_1^{\prime\prime}(0) = 4, \ y_2(0) = -1, \ y_2^{\prime}(0) = 1 \end{array}$$

Write it as a first-order initial value problem in the form y' = My, $y(0) = y_0$. Solution. Introduce $y_3 = y'_1$, $y_4 = y''_1$ and $y_5 = y'_2$. Then, the given system translates into

	- 0 0	$\begin{array}{c} 0 \\ 0 \end{array}$	$\begin{array}{c} 1 \\ 0 \end{array}$	0 0	$\begin{array}{c} 0 \\ 1 \end{array}$		$oldsymbol{y}(0) =$	$2 \\ -1$	
y' =	0	0	0	1	0	y ,	y(0) =	3	ŀ
	-3	$\overline{7}$	0	2	0			4	
	0	5	4	0	1			1	

Solving systems of differential equations

Example 126. Determine the general solution to $y'_1 = 5y_1 + 4y_2 + e^{2x}$, $y'_2 = 8y_1 + y_2$.

Solution. From the second equation it follows that $y_1 = \frac{1}{8}(y'_2 - y_2)$. Using this in the first equation, we get $\frac{1}{8}(y''_2 - y'_2) = \frac{5}{8}(y'_2 - y_2) + 4y_2 + e^{2x}$. After multiplying with 8, this is $y''_2 - y'_2 = 5(y'_2 - y_2) + 32y_2 + 8e^{2x}$. Simplified, this is $y''_2 - 6y'_2 - 27y_2 = 8e^{2x}$, which is an inhomogeneous linear DE with constant coefficients which we know how to solve:

- Since the characteristic roots of the homogeneous DE are −3, 9, while the characteristic root for the inhomogeneous part is 2, there must be a particular solution of the form y_p = Ce^{2x}. Plugging this y_p into the DE, we get y''_p 6y'_p 27y_p = (4 6 · 2 27)Ce^{2x} = -35Ce^{2x} = 8e^{2x}. Hence, C = -⁸/₃₅.
- We therefore obtain $y_2 = -\frac{8}{35}e^{2x} + C_1e^{-3x} + C_2e^{9x}$ as the general solution to the inhomogeneous DE.

We can then determine y_1 as

$$y_1 = \frac{1}{8}(y'_2 - y_2)$$

= $\frac{1}{8}\left(-\frac{16}{35}e^{2x} - 3C_1e^{-3x} + 9C_2e^{9x} + \frac{8}{35}e^{2x} - C_1e^{-3x} - C_2e^{9x}\right)$
= $-\frac{1}{35}e^{2x} - \frac{1}{2}C_1e^{-3x} + C_2e^{9x}.$

Armin Straub straub@southalabama.edu Solution. (alternative) We can also start with $y_2 = \frac{1}{4}y'_1 - \frac{5}{4}y_1 - \frac{1}{4}e^{2x}$ (from the first equation), although the algebra will require a little more work. In that case, we have $y'_2 = \frac{1}{4}y''_1 - \frac{5}{4}y'_1 - \frac{1}{2}e^{2x}$. Using this in the second equation, we get $\frac{1}{4}y''_1 - \frac{5}{4}y'_1 - \frac{1}{2}e^{2x} = 8y_1 + \frac{1}{4}y'_1 - \frac{5}{4}y_1 - \frac{1}{4}e^{2x}$. Simplified, this is $y''_1 - 6y'_1 - 27y_1 = e^{2x}$, which is an inhomogeneous linear DE with constant coefficients which

Simplified, this is $y_1'' - 6y_1' - 27y_1 = e^{2x}$, which is an inhomogeneous linear DE with constant coefficients which know how to solve:

- Since the characteristic roots of the homogeneous DE are −3, 9, while the characteristic root for the inhomogeneous part is 2, there must be a particular solution of the form y_p = Ce^{2x}. Plugging this y_p into the DE, we get y''_p 6y'_p 27y_p = (4 6 · 2 27)Ce^{2x} = -35Ce^{2x} [!] = e^{2x}. Hence, C = -¹/₃₅.
- We therefore obtain $y_1 = -\frac{1}{35}e^{2x} + C_1e^{-3x} + C_2e^{9x}$ as the general solution to the inhomogeneous DE.

We can then determine y_2 as

$$y_{2} = \frac{1}{4}y'_{1} - \frac{5}{4}y_{1} - \frac{1}{4}e^{2x}$$

= $\frac{1}{4}\left(-\frac{2}{35}e^{2x} - 3C_{1}e^{-3x} + 9C_{2}e^{9x}\right) - \frac{5}{4}\left(-\frac{1}{35}e^{2x} + C_{1}e^{-3x} + C_{2}e^{9x}\right) - \frac{1}{4}e^{2x}$
= $-\frac{8}{35}e^{2x} - 2C_{1}e^{-3x} + C_{2}e^{9x}.$

Important. Make sure you can explain why both of our solutions are equivalent!

Example 127.

(a) Determine the general solution to $y'_1 = 5y_1 + 4y_2$, $y'_2 = 8y_1 + y_2$. **Comment.** In matrix form, with $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, this is $y' = \begin{bmatrix} 5 & 4 \\ 8 & 1 \end{bmatrix} y$.

(b) Solve the IVP
$$y'_1 = 5y_1 + 4y_2$$
, $y'_2 = 8y_1 + y_2$, $y_1(0) = 0$, $y_2(0) = 1$.

Solution.

- (a) Note that this is the homogeneous system corresponding to the previous problem. It therefore follows from our previous solution (the latter one) that $y_1 = C_1 e^{-3x} + C_2 e^{9x}$ and $y_2 = -2C_1 e^{-3x} + C_2 e^{9x}$ is the general solution of the homogeneous system.
- (b) We already have the general solutions y_1 , y_2 to the two DEs. We need to determine the (unique) values of C_1 and C_2 to match the initial conditions: $y_1(0) = C_1 + C_2 \stackrel{!}{=} 0$, $y_2(0) = -2C_1 + C_2 \stackrel{!}{=} 1$ We solve these two equations and find $C_1 = -\frac{1}{3}$ and $C_2 = \frac{1}{3}$. The unique solution to the IVP therefore is $y_1 = -\frac{1}{3}e^{-3x} + \frac{1}{3}e^{9x}$ and $y_2 = \frac{2}{3}e^{-3x} + \frac{1}{3}e^{9x}$.