
Notes for Lecture 14 Mon, 2/24/2025

Application: Acceleration�velocity models

To model a falling object, we let y(t) be its height at time t.

Then physics has names for y 0(t) and y00(t): these are the velocity and the acceleration.

Physics tells us that objects fall due to gravity (and that it makes already-falling objects fall faster;
in other words, gravity accelerates falling objects). Physicists have measured that, on earth, the
gravitational acceleration is g� 9.81m/s2.
If we only take earth's gravitation into account, then the fall is therefore modeled by

y 00(t)=¡g:

Example 62. A ball is dropped from a 100m tall building. How long until it reaches the ground?
What is the speed when it hits the ground?
Solution. Let y(t) be the height (in meters) at which the ball is at time t (in seconds).
As above, physics tells us that an object falling due to gravity (and ignoring everything else) satisfies the DE
y 00=¡g where g� 9.81. We further know the initial values y(0)= 100, y 0(0)= 0.
Substituting v= y0 in the DE, we get v 0=¡g. This DE is solved by v(t)=¡gt+C.

Hence, y(t)=
R
v(t)dt=¡1

2
gt2+Ct+D.

The initial conditions y(0)= 100, y 0(0)=0 tell us that D= 100 and C =0.
Thus y(t)=¡1

2
gt2+ 100.

The ball reaches the ground when y(t)=¡1

2
gt2+ 100=0, that is after t= 200/g

p
� 4.52 seconds.

The speed then is jy 0(4.52)j � 44.3m/s.

For many applications, one needs to take air resistance into account.
This is actually less well understood than one might think, and the physics quickly becomes rather complicated.
Typically, air resistance is somewhere in between the following two cases:

� Under certain assumptions, physics suggests that air resistance is proportional to the square
of the velocity.
Comment. A simplistic way to think about this is to imagine the falling object to bump into (air)
particles; if the object falls twice as fast, then the momentum of the particles it bumps into is twice as
large and it bumps into twice as many of them.

� In other cases such as �relatively slowly� falling objects, one might empirically observe that
air resistance is proportional to the velocity itself.
Comment. One might imagine that, at slow speed, the falling object doesn't exactly bump into particles
but instead just gently pushes them aside; so that at twice the speed it only needs to gently push twice
as often.

Armin Straub
straub@southalabama.edu

33



Example 63. When modeling the (slow) fall of a parachute, physics suggests that the air resis-
tance is roughly proportional to velocity. If y(t) is the parachute's height at time t, then the
corresponding DE is y 00=¡g¡ �y 0 where �> 0 is a constant.
Comment. Note that ¡�y 0 > 0 because y 0 < 0. Thus, as intended, air resistance is acting in the opposite
direction as gravity and slowing down the fall.

Determine the general solution of the DE.
Solution. Substituting v= y 0, the DE becomes v 0+ �v=¡g.
This is a linear DE. To solve it, we determine that the integrating factor is exp(

R
�dt)= e�t.

Multiplying the DE with that factor and integrating, we obtain e�tv=
R
¡ge�tdt=¡g

�
e�t+C.

Hence, v(t)=¡g

�
+Ce¡�t.

Correspondingly, the general solution of the DE is y(t)=
R
v(t)dt=¡g

�
t¡ C

�
e¡�t+D.

Comment. Note that lim
t!1

v(t)=¡g
�
. In other words, the terminal velocity is v1=¡g

�
.

This is an interesting mathematical consequence of the DE. (And important for the idea behind a parachute!)
Note that, if we know that there is a terminal speed, then we can actually determine its value v1 from the DE
without solving it by setting v 0=0 (because, once the terminal speed is reached, the velocity does not change
anymore) in v 0+ �v=¡g. This gives us �v1=¡g and, hence, v1=¡g/� as above.

Linear DEs of higher order

The most general linear first-order DE is of the form A(x)y 0+B(x)y+C(x)=0. Any such DE
can be rewritten in the form y 0+P (x)y= f(x) by dividing by A(x) and rearranging.
We have learned how to solve all of these using an integrating factor.

Linear DEs of order n are those that can be written in the form

y(n)+Pn¡1(x) y(n¡1)+ :::+P1(x)y 0+P0(x)y= f(x):

The corresponding homogeneous linear DE is the DE

y(n)+Pn¡1(x) y(n¡1)+ :::+P1(x)y 0+P0(x)y=0;

and it plays an important role in solving the original linear DE.
Important note. A linear DE is homogeneous if and only if the zero function y(x)= 0 is a solution.

Advanced comment. As we observed in the first-order case, if I is an interval on which all the Pj(x) as well as
f(x) are continuous, then for any a2 I the IVP with y(a) = b0, y 0(a) = b1, :::, y(n¡1)(a) = bn¡1 always has
a unique solution (which is defined on all of I).

Theorem 64. (general solution of linear DEs) For a linear DE of order n, the general solution
always takes the form

y(x)= yp(x)+C1y1(x)+ :::+Cn yn(x);

where yp is any single solution (called a particular solution) and y1; y2; :::; yn are solutions to
the corresponding homogeneous linear DE.

Comment. If the linear DE is already homogeneous, then the zero function y(x) = 0 is a solution and we can
use yp=0. In that case, the general solution is of the form y(x)=C1y1+C2y2+ ���+Cnyn.

Why? This structure of the solution follows from the observation in the next example.
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Example 65. Suppose that y1 solves y 00 + P (x)y 0 + Q(x)y = f(x) and that y2 solves
y 00+P (x)y 0+Q(x)y= g(x) (note that the corresponding homogeneous DE is the same).

Show that 7y1+4y2 solves y 00+P (x)y 0+Q(x)y=7f(x)+ 4g(x).
Solution. (7y1+4y2)

00+P (x)(7y1+4y2)
0+Q(x)(7y1+4y2)

= 7fy100+P (x)y1
0 +Q(x)y1g+4fy200+P (x)y2

0 +Q(x)y2g=7 � f(x)+ 4 � g(x)

Comment. Of course, there is nothing special about the coefficients 7 and 4.
Important comment. In particular, if both f(x) and g(x) are zero, then 7f(x) + 4g(x) is zero as well. This
shows that homogeneous linear DEs have the important property that, if y1 and y2 are two solutions, then any
linear combination C1 y1+C2 y2 is a solution as well.

The upshot is that this observation reduces the task of finding the general solution of a homoge-
neous linear DE to the task of finding n (sufficiently) different solutions.

Example 66. (extra) The DE x2y 00+2xy 0¡ 6y=0 has solutions y1=x2, y2=x¡3.

(a) Determine the general solution.

(b) Solve the IVP x2y 00+2xy 0¡ 6y=0 with y(2)= 10, y 0(2)= 15.

Solution.

(a) Note that this is a homogeneous linear DE of order 2.
Hence, given the two solutions, we conclude that the general solution is y(x) = Ax2 + Bx¡3 (in this
case, the particular solution is yp=0 because the DE is homogeneous).

(b) We already know that the general solution of the DE is y(x)=Ax2+Bx¡3.
It follows that y0(x)= 2Ax¡ 3Bx¡4.
We now use the two initial conditions to solve for A and B:

Solving y(2)= 4A+B/8=
!
10 and y 0(2)= 4A¡ 3/16B=

!
15 for A and B results in A=3, B=¡16.

Hence, the unique solution to the IVP is y(x)= 3x2¡ 16/x3.
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