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Problem 1. Solve y ′′+2y ′+ y=2e2x+ e−x, y(0)=−1, y ′(0)= 2.

Solution. The characteristic equation for the associated homogeneous DE has roots −1, −1 (the “old” roots). The
right-hand side solves a DE whose characteristic equation has roots −1, 2 (the “new” roots).

Hence, there is a particular solution of the form yp=Ae2x+Bx2e−x. To find A,B we plug into the DE. [	 ] We find

A=
2

9
and B=

1

2
.

Particular solution: yp=
2

9
e2x+

1

2
x2e−x

General solution: y=
2

9
e2x+

1

2
x2e−x+ c1e

−x+ c2xe
−x

Now, we use the initial values [	 ], to find y(x)=
2

9
e2x+

1

2
x2e−x− 11

9
e−x+

1

3
xe−x. �

Problem 2.

(a) Assume that the angle θ(t) of a swinging pendulum is described by θ ′′+4θ=0. Suppose θ(0)=
3

10
and θ ′(0)=−4

5
.

What is the amplitude of the resulting periodic oscillations?

(b) For which values of the damping constant c > 0 is the system y ′′+ cy ′+5y=0 underdamped?

(c) For which value of the external frequency ω does the system y ′′+4y=3cos(ωx) exhibit resonance?

(d) A forced mechanical oscillator is described by x′′+2x′+x= 25 cos (2t). What is the amplitude of the resulting
steady periodic oscillations?

Solution.

(a) The characteristic equation has roots ±2i. Hence, θ(t) =A cos (2t) +B sin (2t).

θ(0)=A=
3

10
. θ ′(0)=2B=−4

5
. Hence, θ(t)=

3

10
cos(2t)− 2

5
sin(2t)= r cos (2t−α) where r(cosα, sinα)= (A,B).

In particular, the amplitude is A2+B2
√

=
9

100
+

16

100

√

=
1

2
.

(b) The characteristic equation r2 + cr + 5 has roots
−c± c2− 20

√

2
. The system is underdamped if the solutions

involve oscillations, which happens if and only if the discriminant ∆= c2− 20 is negative. c2−20< 0 if c< 20
√

.

So, the system is underdamped for c∈
(

0, 2 5
√ )

.

(c) The natural frequency is 2 (±2i are the roots of the characteristic equation). Hence, there will be resonance if
ω=2.

(d) The “old” roots are −1, −1. The “new” roots are ±2i. Since they don’t overlap, xsp has the form xsp =
A cos (2t)+B sin (2t).

We plug into the DE to find xsp
′′ +2xsp

′ + xsp =(−4A+4B+A)cos(2t) + (−4B − 4A+B)sin(2t)�
!
25cos (2t).

Solving −3A+4B= 25 and −3B − 4A=0, we get B=−4

3
A,
(

−3− 16

3

)

A=− 25

3
A= 25. So, A=−3 and B=4.

xsp =−3 cos (2t)+ 4 sin (2t). In particular, the amplitude is (−3)2+42
√

=5. �

Problem 3. The motion of a certain mass on a spring is described by x′′+x′+
x

2
=5 sin (ωt).

(a) Assume first that ω=1. Find the position function x(t) if x(0)= 2 and x′(0)=0.
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(b) Suppose the frequency of the external force is changed so that x′′+x′+
x

2
=5 sin (ωt). Does practical resonance

occur for some value of ω? If so, for what ω?

Solution.

(a) “Old” roots
−2± 4− 8

√

4
= −1

2
± 1

2
i. “New” roots ±iω. Since there is no overlap, xsp has the form xsp =

A1cos(t) +A2sin(t). Plugging into DE, we find A1=−4, A2=−2.

Hence, the general solution is x(t)=−4cos(t)− 2sin(t)+ e−t/2(c1 cos (t/2)+ c2 sin (t/2)).

Using x(0) = −4 + c1 = 2, we find c1 = 6. Then x′(t) = 4sin(t) − 2cos(t)− 1

2
e−t/2(c1 cos (t/2) + c2 sin (t/2)) +

e−t/2
(

−2 sin (t/2)+
c2

2
cos (t/2)

)

. Using x′(0)=−2− c1

2
+

c2

2
=0, we also find c2= 10.

In summary, x(t)=−4cos(t)− 2sin(t)+ e−t/2(6 cos (t/2)+ 10 sin (t/2)).

(b) We proceed as in the first part, but now xsp is of the form xsp =A1cos(ωt)+A2sin(ωt). Plugging into the DE,

we find: first A2=
2ω2− 1

2ω
A1, then A1=−10

2ω

(2ω)2+ (2ω2− 1)2
=−10

2ω

4ω4+1
and so A2=−10

2ω2− 1

4ω4+1
.

The amplitude is A(ω)= A1
2+A2

2
√

=
10

1+ 4ω4
√ .

Practical resonance occurs if A(ω) has a maximum at some ω > 0. To investigate, we compute A′(ω) =

−5
16ω3

(1+ 4ω4)3/2
. We see that A′(ω) = 0 only for ω=0. Hence, there is no practical resonance here. �

Problem 4. Find the general solution of y ′′− 4y ′+4y=3e2x.

Solution. The characteristic equation for the homogeneous DE has roots 2, 2 (“old” roots). The right-hand side
solves a DE whose characteristic equation has roots 2 (“new” roots). Hence, there is a particular solution of the form
yp=Ax2e2x.

To find A, we plug into the differential equation using yp
′ =2A(x+ x2)e2x and yp

′′=2A(1+ 4x+2x2)e2x:

yp
′′− 4yp

′ +4yp= [2A(1+4x+2x2)− 8A(x+x2) + 4Ax2]e2x=2Ae2x7
!
3e2x. Hence, A=

3

2
.

The general solution is
(

c1+ c2x+
3

2
x2
)

e2x. �

Problem 5.

(a) Consider the differential equation x2y ′′− 4xy ′+6y=0. Find all solutions of the form y(x)= xr.

(b) Show that the solutions you found are independent.

(c) Note that the Wronskian of your solutions is zero for x=0. Why does this not contradict the independence?

(d) Find the general solution of x2y ′′− 4xy ′+6y= x3.

Solution.

(a) Plugging y=xr into the DE and assuming r>2, we get x2r(r−1)xr−2−4xrxr−1+6xr=[r(r−1)−4r+6]xr=
0. r(r− 1)− 4r+6=(r− 2)(r− 3). Hence, we have found the solutions x2 and x3. Since this is a second-order
equation and our solutions are independent (as we will certify next), there can be no other solutions (and we
can safely ignore the case r < 2).

(b) The Wronskian of y1= x2, y2=x3 is W (x)= det
(

x2 x3

2x 3x2

)

= x4
� 0 for x� 0.

(c) Before using the Wronskian theorem, we have to put the DE into the form y ′′ − 4x−1 y ′ + 6x−2y = 0. The
coefficients are not defined, and hence not continuous, for x = 0. We therefore cannot apply the Wronskian
criterion at x=0.
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(d) Put DE in the form y ′′ − 4x−1 y ′ + 6x−2y = x. The method of variation of constants shows that a particular
solution is given by

yp=−y1(x)

∫

y2(x)f(x)

W (x)
dx+ y2(x)

∫

y1(x)f(x)

W (x)
dx=−x2

∫

1dx+ x3

∫

1

x
dx=−x3+ x3ln|x|.

Hence, the general solution is c1x
2+(c2+ ln |x|)x3. �

Problem 6. Solve x
′=





3 −2 0
−1 3 −2
0 −1 3



x, x(0)=





0
2
6



.

Solution. The characteristic polynomial is

det





3−λ −2 0
−1 3−λ −2
0 −1 3−λ



=(3−λ)det

(

3−λ −2
−1 3−λ

)

+2det

(

−1 −2
0 3−λ

)

=(3−λ)3− 2(3−λ)− 2(3−λ)

= (3−λ)[(3−λ)2− 4],

which has roots λ=3, 3± 2=1, 3, 5. These are the eigenvalues.

λ=1.





2 −2 0
−1 2 −2
0 −1 2



v=0. We find v=





2
2
1



.

λ=3.





0 −2 0
−1 0 −2
0 −1 0



v=0. We find v=





2
0
−1



.

λ=5.





−2 −2 0
−1 −2 −2
0 −1 −2



v=0. We find v=





2
−2
1



.

Consequently, the general solution is x(t) = c1





2
2
1



et+ c2





2
0
−1



e3t+ c3





2
−2
1



e5t.

x(0)= c1





2
2
1



+ c2





2
0
−1



+ c3





2
−2
1



=





2 2 2
2 0 −2
1 −1 1



c=





0
2
6



.

We eliminate:
2 2 2 0
2 0 −2 2
1 −1 1 6

�

2 2 2 0
0 −2 −4 2
0 −2 0 6

. Hence, c2=−3, c3=1, c1=2.

The IVP is solved by 2





2
2
1



et− 3





2
0
−1



e3t+





2
−2
1



e5t. �
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