Sketch of Lecture 44 Mon, 04,/21/2014

The Laplace transform

Definition 162. The Laplace transform of a
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We also write L(f(t))=F(s). cos (wt) PR
Note that, in order for the integral to exist, f(¢) should sin (Wt) Szioﬂ
be, say, piecewise continuous and of at most exponential 7 —
growth. That’s true for most of the functions, we are inter- f,/(t) 5 SF(S) f(0> -
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Note that we needed a — s < 0 in order for the integral to converge. Hence the Laplace transform has domain
s$>a. (During this introduction, we will not care too much about these technical details.) &

Example 164. The Laplace transform is linear:
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which equals c1Fy(s) + caFa(s). &
Example 165. By Euler’s identity, ! = cos (wt) + isin (wt). Hence, by linearity,

L(e**t) = L(cos (wt)) + 3 L(sin (wt)).
On the other hand,
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Matching real and imaginary parts, gives £(cos (wt)) = szjw2 and L(sin (wt)) = 524(:“;2' &

Example 166. Using integration by parts,

oo
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In order to obtain the Laplace transform of higher derivatives, we can iterate. For instance,
L(1"(0) = s£((1) — 1/(0) = sls P(s) — £(0)] - J(0) = s2F(s) — 5 £(0) — ['(0). o
Example 167. Consider the (very simple) IVP z/(t) — 2x(t) =0, z(0) =7. O course, @ (t) = Te?.|
L(&'(t) — 22(1)) = L(2'(£)) — 2L(2(t)) = 5 X (s) — 2(0) — 2X () = (s — 2) X (5) — T=0.

This is an algebraic equation for X(s). It follows that X(s) :sT72' By inverting the Laplace transform (which
is possible!), we conclude that x(t) = 7e?’. &
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