Sketch of Lecture 43 Wed, 04,/16/2014

Review: basic skills

We have learned quite a bit about complex numbers and linear algebra. These are also very useful for your
general (mathematical) well-being outside of DEs. Here is a rough overview of what we got to know.
e We can calculate with (e.g. divide) complex numbers. Real and imaginary part.
e We are still amazed by Euler’s identity e? = cosf + i sin6.
e Add and multiply vectors and matrices. Identity matrix.
e Compute determinants of matrices by row (or column, if you wish) expansion.
The determinant is zero <= the columns (or, equivalently, rows) are linearly dependent.
Invert matrices (at least 2 x 2).
e Find eigenvalues A of a matrix. These are the roots of the characteristic polynomial det (A — A\I).

If the matrix is n X n, then the characteristic polynomial is of degree n. Over the complex numbers there are always n
roots/eigenvalues if we count with repetition.

e For each eigenvalue there is at least one eigenvector v and we know how to find it. If X\ is a repeated, say
m times, we may find up to m independent eigenvectors. If we find less, say only k <m, then X is said to
have defect m — k.

e If X is defective, then we know that we can find generalized eigenvectors. These come in chains.

We know how to take the exponential of a matrix: e?

How was e” defined? Well, there is options... what is your favourite definition of e* when a is just a number?
Definition via Taylor series: e*=1+4a +%2+%+ ... works just as well for matrices e4=1+ A+A7z+%d+

at

Via derivative: e%?is unique x(t) such that z’=ax, x(0)=1 vs. e?%is unique ®(¢t) such that ®'=A®, &(0)=1T1
Review: systems of DEs

We spent basically all the time since the last midterm on systems of DEs. Here is a reminder why and where we
got.
e Any high-order DE can be transformed into a first-order system.

That’s why we have been studying @’ = Aax + f for so long. It is not some esoteric special case that happens to be
doable—far from that: any linear DE can be written in this form!! [And any DE can be approximated by a linear DE.|

e For linear systems @’ = A(t)x existence and uniqueness of solutions is for free.
.. on the interval I where the entries of A(t) are continuous.
e We are familiar with the Wronskian and fundamental matrices.
The matrix exponential e4?
P(t)P(0) 1.
e We can solve all homogeneous equations &’ = Ax where A has constant entries.
o First, find eigenvalues A. For each A, we then determine the eigenvectors. If A turns out to be
defective, then we have to look for generalized eigenvectors.
o Here’s a reminder how to get solutions out of a chain vy, ..., vg of generalized eigenvectors for A:
(A=XD)v1=0 solution: vie*t

(A= ADvy=1v, solution: (vt + va)er?

is a particularly nice fundamental matrix. If ®(t) is some fundamental matrix, then e4t =

tk‘—l tk‘—2
=] +v =) + ...vk_1t+'vk>e“.

o If A=a+biis a complex eigenvalue, then it occurs together with its conjugate a — bi. We can get

real-valued solutions by taking real and imaginary part of the complex solutions.
We only need to do that for one of a & bi because the other will give rise to equivalent solutions.
e We learned how to solve inhomogeneous equations &' = Az + f(t).
o If xp(t) is some particular solution, then a,(t) + @ (t) is the general solution.
Here, ®.(t) denotes the general solution of the complementary equation @’= Ax.

o We know two methods to find an a,(t): undetermined coefficients and variation of constants. Vari-
ation of constants, that is ®(¢t)[ ®(t)~1f(t)dt, can always to be used, whereas undetermined
coefficients requires f(¢) to be a linear combination of polynomials times exponentials (so that we
can attach a “root” to it).

(A= ADvr=vr_1 solution: (’vl
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