
Sketch of Lecture 40 Wed, 04/09/2014

There was nothing special about 2π-periodic functions considered last time (except that cos (t)
and sin (t) have period 2π). Note that cos (πt/L) has period 2L.

Theorem 151. Every∗ 2L-periodic function f can be written as a Fourier series

f(t)=
a0
2

+
∑

n=1

∞
(

ancos
(

nπt

L

)

+ bnsin
(

nπt

L

))

.

Techn ical detail∗: f needs to b e, e.g., p iecew ise sm ooth .

A lso , if t is a d iscontinuity , then the Fourier series converges to the average
f(t−) + f(t+)

2
.

The Fourier coefficients an, bn are unique and can be computed as

an=
1

L

∫

−L

L

f(t)cos
(

nπt

L

)

dt, bn=
1

L

∫

−L

L

f(t)sin
(

nπt

L

)

dt.

Review. Last time, we computed f(t)=







−1, for t∈ (−π, 0),
+1, for t∈ (0, π),
0, for t=−π, 0, π

=
∑

n=1
n odd

∞
4

πn
sin (nt). ♦

Example 152. Find the Fourier series of the 2-periodic function g(t)=







−1 for t∈ (−1, 0)
+1 for t∈ (0, 1)
0 for t=−1, 0, 1

.

Solution. Instead of computing from scratch, we can use the fact that g(t) = f(πt), with f as reviewed

above, to get g(t)= f(πt)=
∑

n odd

4

πn
sin (nπt). ♦

Remark 153. Convergence of such series is not obvious! Recall, for instance, that the (odd part of) the harmonic

series 1+
1

3
+

1

5
+

1

7
+
 diverges. ♦

Theorem 154. If f(t) is continuous and f(t)=
a0

2
+
∑

n=1
∞ (

ancos
( nπt

L

)

+ bnsin
( nπt

L

))

, then∗

f ′(t)=
∑

n=1
∞ ( nπ

L
bncos

( nπt

L

)

− nπ

L
ansin

( nπt

L

))

(i.e., we can differentiate termwise).

Technical detail∗: f ′ needs to be, e.g., piecewise smooth (so that it has a Fourier series itself).

Example 155. Let h(t) be the 2-periodic function with h(t)=
{

−t for t∈ (−1, 0)
+t for t∈ (0, 1)

. Compute the

Fourier series of h(t).

Solution. We could just use the integral formulas to compute an and bn. Since h(t) is even (plot it!), we
will find that bn=0. Computing an is left as an exercise.

Solution. Note that h(t) is continuous and h′(t)= g(t), with g(t) as in Example 152. Hence, we can apply
Theorem 154 to conclude

h′(t) = g(t)=
∑

n=1
n odd

∞
4

πn
sin (nπt) � h(t) =

∑

n=1
n odd

∞
4

πn

(

− 1

πn

)

cos(nπt)+C,

where C =
a0

2
=

1

2

∫

−1

1
h(t)dt is the constant of integration. Thus, h(t)=

1

2
−∑

n odd

4

π2n2
cos (nπt). ♦

Remark 156. Note that t=0 in the last Fourier series, gives us
π2

8
=

1

1
+

1

32
+

1

52
+	 . As an exercise, you can

try to find from here the fact that
∑

n>1
1

n2
=

π2

6
. Similarly, we can use Fourier series to find that

∑

n>1
1

n4
=

π4

90
.

JFF: if you recall from lecture 13, these are the values ζ(2) and ζ(4) of the Riemann zeta function ζ(s). No
such values are known for ζ(3), ζ(5),	 Nobody believes these to be rational numbers, but it was only in 1978
that Apéry proved that ζ(3) is not a rational number29. ♦
Example 157. The function g(t), from in Example 152, is not continuous. For all values, except the dis-
continuities, we have g ′(t) = 0. On the other hand, differentiating the Fourier series termwise, results in
4
∑

n odd
cos (nπt), which diverges30 for most values of t (that’s easy to check for t= 0). This illustrates that

we cannot apply Theorem 154 because of the missing continuity. ♦

29. We also know that at least one of ζ(5), ζ(7), ζ(9), ζ(11) is not a rational number. (Our state of ignorance!)

30. The issues we are facing here can be fixed by generalizing the notion of function to distributions. (Maybe
you have heard of the Dirac delta “function”.)
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