
Sketch of Lecture 20 Tue, 02/25/2014

External forces plus damping

Example 85. Find the general solution of 2x′′+2x′+ x= 10 sin (t).

Solution. “Old” roots
−2± 4− 8

√

4
=−1

2
± 1

2
i. So the system without external force is underdamped. [Why?!]

After a routine calculation, xp=−4cos(t)− 2sin(t)= 20
√

(cos (t−α)) with α= tan−1 (1/2)+π≈ 3.605. Here,

we used that (−4,−2)= 20
√

(cosα, sin α).

Hence, the general solution is x(t)= 20
√

cos (t−α)

xs p

+ e−t/2(c1 cos (t/2)+ c2 sin (t/2))

xt r→0 as t→∞

.

Observe how x=xtr+xsp splits into transient motion xtr and steady periodic oscillations xsp. ♦
Example 86. Find the steady periodic solution to x′′ + 2x′ + 5x = cos (ωt). What is the
amplitude of the steady periodic oscillations? For which ω is the amplitude maximal?

Solution. “Old” roots −1 ± 2i. [N ot rea lly needed, b ecause positive

damping prevents duplication ; can you see it?]

Hence, xsp = A1cos(ωt) +A2sin(ωt) and to find A1, A2 we need to plug
into the DE.

Doing so (we did!), we find A1=
5−ω2

(5−ω2)2 +4ω2
, A2=

2ω

(5−ω2)2+4ω2
.

Consequently, the amplitude of xsp is Asp = A1
2+A2

2
√

=
1

(5−ω2)2 +4ω2
√ .

The function Asp(ω) is sketched to the right. It has a maximum at
ω = 3

√
at which the amplitude is unusually large (well, here it is not

very pronounced). We say that practical resonance occurs for ω= 3
√

.

[For comparison, without damping, (pure) resonance occurs for ω= 5
√

.]
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Systems of differential equations

Example 87. Consider two springs attached to each other as in Figure 4.1.1.

Write x1(t) for the displacement of mass m1 from equilibrium and, likewise, x2(t) for the mass m2. Note that
the first spring is stretched by x1 whereas the second spring is stretched by x2−x1. Applying Hooke’s law and
Newton’s second law to each mass, while assuming the other one to be stationary, we find that

m1x1
′′ = −k1x1+ k2(x2−x1),

m2x2
′′ = −k2(x2−x1).

This is a system of differential equations. This particular one is linear and second-order.

Of course, now one can again introduce damping, external forces, etc. ♦
Fact. Any DE (or system) can be transformed into a first-order system of DEs! ♦
Example 88. Write y ′′′+ a(x)y ′′+ b(x)y ′+ c(x)y= f(x) as a first-order system.

Solution. Introduce y1= y, y2= y ′, y3= y ′′. Then

y1
′ = y2,

y2
′ = y3,

y3
′ = −c(x)y1− b(x)y2− a(x)y3+ f(x).

This system is equivalent to the original DE in that y solves the original DE if and only if (y1, y2, y3)=(y, y′, y ′′)
solves the system of DEs.

By the way, the ab ove system can be expressed in matrix -vector notation as




y1

y2

y3





′

=





0 1 0
0 0 1

−c(x) −b(x) −a(x)









y1

y2

y3



+





0
0

f(x)



, or, for short, y ′ =A(x)y +F (x),

where, in the final expression , A(x) is the 3 × 3 matrix and F (x) the vector. Th is is not ju st cosm etics but understanding

matrices w ill allow us to use s im ilar techn iques as b efore ; in m any ways, we w ill b e able to treat A ju st like a numb er. ♦
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