
Sketch of Lecture 17 Wed, 02/19/2014

Theorem 74. The linear DE Ly= y ′′+P (x)y ′+Q(x)y= f(x) has particular solution

yp=−y1(x)

∫

y2(x)f(x)

W (x)
dx+ y2(x)

∫

y1(x)f(x)

W (x)
dx,

where y1, y2 are independent solutions of Ly=0 andW = y1y2
′− y1

′ y2 is the Wronskian of y1, y2.

[Note that considering all possible constants of integration actually gives the general solution of Ly= f(x).]

Proof. Let us look for yp=u1(x) y1(x)+u2(x) y2(x). This “ansatz” is called variation of constants/parameters.

Then yp
′ = u1

′ y1+u2
′ y2

=0 (or so we w ish)

+u1y1
′ +u2y2

′ and yp
′′=u1

′ y1
′ +u2

′ y2
′ +u1y1

′′+u2y2
′′.

Lyp= u1
′ y1

′ +u2
′ y2

′ +u1y1
′′+u2y2

′′+P (x)(u1y1
′ +u2y2

′)+Q(x)(u1y1+u2y2)

=u1
′ y1

′ +u2
′ y2

′ +u1Ly1+ u2Ly2= u1
′ y1

′ +u2
′ y2

′

So, in order for yp=u1y1+u2y2 to solve Ly= f(x), we need

u1
′ y1+ u2

′ y2 = 0,

u1
′ y1

′ + u2
′ y2

′ = f(x).

These are linear equations in u1
′ and u2

′ . Solving gives u1
′ = −y2 f(x)

y1y2
′ − y1

′ y2
and u2

′ = y1 f(x)

y1y2
′ − y1

′ y2
, and it only remains

to integrate. �

Example 75. Find a particular solution of y ′′− 2y ′+ y=
ex

x
.

Solution. Here, y1= ex, y2=xex. We calculate W (x)= e2x.

yp =−ex
∫

1dx+ xex
∫ 1

x
dx= xex[ln |x| − 1]. (Note that, with integration constants, we get −ex(x+ C1) +

xex(ln |x|+C2), which is the general solution. So any constants suffice to give us a particular solution.) ♦
Example 76. Solve Ly= x2y ′′− 4xy ′+6y=x3. Given: y1= x2 and y2=x3 solve Ly=0.

Solution. First, W (x)=x4. Put DE in the form y ′′− 4x−1 y ′+6x−2y= x.

yp=−y1(x)

∫

y2(x)f(x)

W (x)
dx+ y2(x)

∫

y1(x)f(x)

W (x)
dx=−x2

∫

1dx+x3

∫

1

x
dx=−x3+ x3ln|x|.

Hence, the general solution is C1x
2+(C2+ ln |x|)x3. ♦

Remark 77. Just for fun (and understanding and context), let us revisit our method of solving
first-order linear DEs Ly= y ′+P (x)y= f(x). [Variation of constants a lso extends to higher-order DEs.]

Note that Ly=0 has solution y1= exp (−
∫

P (x)dx), which is nothing but the inverse of the integrating factor!

Using the integrating factor, we arrive at yp(x)= y1(x)
∫ f(x)

y1(x)
dx which is the analog of Theorem 74. ♦

Application: motion of a pendulum

The motion of an (ideal) pendulum is described by
d2θ

dt2
+

g

L
sinθ=0, where

θ is the angular displacement and L is the length of the pendulum (and,
as usual, g is acceleration due to gravity).

Proof. We assume the string to be massless, and let m be the swinging mass.

Let s and h be as in the picture on the right.

Velocity (more accurately, speed) of mass: v=
ds

dt
=L

dθ

dt

Kinetic energy: T =
1

2
mv2=

1

2
mL2

(

dθ

dt

)

2

Potential energy: V =mgh=mgL(1− cosθ) (weight mg times height h)

Conservation of energy: T + V = const

Take time derivative:
1

2
mL2 2

dθ

dt

d2θ

dt2
+mgL sinθ

dθ

dt
=0. Finally, cancel terms. �

Θ

s

L

h

Armin Straub
astraub@illinois.edu

17


