Sketch of Lecture 10 Wed, 02/05/2014

Example 38. Solve the IVP ¢+ 7y” + 14y’ 4+ 8y =0 with y(0)=1, y'(0)=0, y"(0) =1.

Solution. Last time, we found that the DE has the general solution y(z) = Ae™* 4+ Be 2% 4+ Ce 4%,
y(r)=Ae 4+ Be 22+ Ce ™ y(0)=A+B+C=1

y'(x)=—Ae T —2Be™2* —4Ce~**, ¢/ (0)=—A—-2B —4C =0

y"(x)=Ae ®+4Be 2"+ 16Ce~4* y"(0)=A+4B+16C =1

Solving the system of linear equations, we find A =3, B=—5/2, C =1/2. Hence, the solution to the IVP is
y(r)=3e"% —5/2e 2% 4 1/2e7 4%, %

Example 39. Consider the IVP from the previous example.

Note that the DE let’s us determine y’””/(0) = —7y"/(0) — 14y’(0) — 8y(0) = —15 (without solving it!). By applying
% to the DE, we can likewise find y*)(0), y(®)(0), ...

This can be done with any DE and gives another indication why an IVP “usually” has a unique solution, and
why initial conditions of this form are very natural to consider. &

Example 40. Find the general solution of 3’ =0. [Then, y™ =0.]

Solution. We know from Calculus that the general solution is y(x) = A + Bz.

Solution. The characteristic equation is 72=0. So one solution is y; =e%®=1. But what is a second solution?
As Calculus showed, a second solution is y2 =xe®® = 2. It turns out that this always works! &

Example 41. Find the general solution of y” — 2y’ + y=0.

Solution. The characteristic equation is 72 — 2r 4+ 1= (r — 1)2. Hence, y; = €”.
But what is the second solution? Inspired by the previous example, we can check that yo=xe? is a solution.

Hence, the general solution is y(x) = Ae® + Bxe®. &

Theorem 42. Consider a homogeneous linear DE with constant coefficients 3™ +
Ap—1 y(”_ 1) +...+ aly’ +apy=0. (Its characteristic polynomial is p(r) =r"+a,, _ 17"~ +... +ayr+ag.)

e If g is a root of the characteristic polynomial and if k is its multiplicity (this means
that (r —rg)¥ is a factor of p(r)), then €™ xem ... 2¥~le"0® are solutions of the DE.

e Combining these solutions for all roots r¢, actually gives the general solution.

This is because a polynomial of degree n has (counting with multiplicity) exactly n (possibly complex)
roots. More on complex number in due time.

Proof. Set D:%. A homogeneous linear DE with constant coefficients can be written as p(D)y =0, where
p(D) is a polynomial in D. [For instance, y” —2y’+y=01is D?y—2Dy+y=(D?—-2D+1)y=(D —1)?y=0.]
In fact, we see that p(r) is just the characteristic polynomiall

If rg is a root of the characteristic polynomial, then p(r) = q(r) (r — ro)*, where k >1 is its multiplicity.

The DE factors likewise and can be written as ¢(D) (D —rg)*y =0.

From here we see that solutions to (D — rg)*y =0 will solve our original DE.

Let y(z) be a solution of (D —rp)*y=0. Write it as y(z) =u(x)e™* (we can always do that for some u(z)).
Let u(z) be some function. Note that (D — ro)[ue™*] =u'e™% + urge™® — ro[ue™*] = u'e™*.

Repeating, we get (D —r)2[ue™] = (D —ro)[u’e™*]=u" ™% and, eventually, (D —r¢)*[ue™?] =uF) e, In
particular, (D —79)Fy =0 is solved by y=wue"? if u® =0.

This latter condition gives u(x) = Co + C1z + ... + Cr_12*~1 and it follows that y(z) = (Co + C1z + ... +
Ckflwkfl)e”m solves our original DE, as claimed. O
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