
Sketch of Lecture 10 Wed, 02/05/2014

Example 38. Solve the IVP y ′′′+7y ′′+ 14y ′+8y=0 with y(0)= 1, y ′(0)= 0, y ′′(0)= 1.

Solution. Last time, we found that the DE has the general solution y(x) =Ae−x+Be−2x+Ce−4x.

y(x)=Ae−x+Be−2x+Ce−4x, y(0)=A+B+C=1

y ′(x)=−Ae−x− 2Be−2x− 4Ce−4x, y ′(0)=−A− 2B − 4C=0

y ′′(x) =Ae−x+4Be−2x+ 16Ce−4x, y′′(0)=A+4B+ 16C =1

Solving the system of linear equations, we find A= 3, B =−5/2, C = 1/2. Hence, the solution to the IVP is

y(x)= 3e−x− 5/2e−2x+1/2e−4x. ♦

Example 39. Consider the IVP from the previous example.

Note that the DE let’s us determine y ′′′(0)=−7y ′′(0)−14y ′(0)−8y(0)=−15 (without solving it!). By applying
d

dx
to the DE, we can likewise find y(4)(0), y(5)(0), 	

This can be done with any DE and gives another indication why an IVP “usually” has a unique solution, and
why initial conditions of this form are very natural to consider. ♦

Example 40. Find the general solution of y ′′=0. [Then, y(n)=0.]

Solution. We know from Calculus that the general solution is y(x)=A+Bx.

Solution. The characteristic equation is r2=0. So one solution is y1=e0x=1. But what is a second solution?
As Calculus showed, a second solution is y2=xe0x= x. It turns out that this always works! ♦

Example 41. Find the general solution of y ′′− 2y ′+ y=0.

Solution. The characteristic equation is r2− 2r+1= (r− 1)2. Hence, y1= ex.

But what is the second solution? Inspired by the previous example, we can check that y2=xex is a solution.

Hence, the general solution is y(x)=Aex+Bxex. ♦

Theorem 42. Consider a homogeneous linear DE with constant coefficients y(n) +
an−1 y

(n−1)+	 +a1y
′+a0y=0. (Its characteristic polynomial is p(r)=rn+an−1r

n−1+	 +a1r+a0.)

• If r0 is a root of the characteristic polynomial and if k is its multiplicity (this means
that (r− r0)

k is a factor of p(r)), then er0x, xer0x, 	 , xk−1er0x are solutions of the DE.

• Combining these solutions for all roots r0, actually gives the general solution.

This is because a polynomial of degree n has (counting with multiplicity) exactly n (possibly complex)
roots. More on complex number in due time.

Proof. Set D=
d

dx
. A homogeneous linear DE with constant coefficients can be written as p(D)y=0, where

p(D) is a polynomial in D. [For instance, y ′′−2y ′+ y=0 is D2y−2Dy+ y=(D2−2D+1)y=(D−1)2y=0.]

In fact, we see that p(r) is just the characteristic polynomial!

If r0 is a root of the characteristic polynomial, then p(r) = q(r) (r− r0)
k, where k>1 is its multiplicity.

The DE factors likewise and can be written as q(D) (D− r0)
ky=0.

From here we see that solutions to (D− r0)
ky=0 will solve our original DE.

Let y(x) be a solution of (D− r0)
ky=0. Write it as y(x) =u(x)er0 x (we can always do that for some u(x)).

Let u(x) be some function. Note that (D− r0)[ue
r0x] =u′er0x+ur0e

r0x− r0[ue
r0x] = u′er0x.

Repeating, we get (D− r0)
2[uer0x]= (D− r0)[u

′ er0 x]=u′′ er0 x and, eventually, (D− r0)
k[uer0x] =u(k) er0 x. In

particular, (D− r0)
ky=0 is solved by y=uer0x if u(k)=0.

This latter condition gives u(x) = C0 + C1x + 	 + Ck−1x
k−1 and it follows that y(x) = (C0 + C1x + 	 +

Ck−1x
k−1)er0x solves our original DE, as claimed. �
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