
Sketch of Lecture 8 Mon, 02/03/2014

Population models

To model a population, let P (t) be its size at time t.

β(t), δ(t): birth and death rate [# of births/deaths (per unit of population per unit of time) at time t]
∆P = β(t)P (t)∆t− δ(t)P (t)∆t
dP

dt
=(β(t)− δ(t))P

Example 31. Some assumptions and corresponding models. [We’ll come back here next class!]

• (basic) If β(t) and δ(t) are constant, we get the exponential model
dP

dt
= kP . P (t)=Cekt.

• (limited supply) δ(t) constant, β(t) = β0− β1P
dP

dt
=(β0− β1P − δ)P = aP − bP 2= kP (1−P/M). This is the logistic equation from Lecture 2.

• (rare species) δ(t) constant, β(t) proportional to P (t)
dP

dt
=(γP − δ)P . The logistic equation, again.

• (rare species with very long life) δ(t)= 0, β(t) proportional to P (t)
dP

dt
= kP 2. Solutions are P (t)=

1

C − kt
where P (0)= 1/C.

This exp lo des when t→C/k. (But by then the sp ecies is not exactly rare anymore	 )

• (harvesting) Each unit of time, h population units are harvested.
dP

dt
=(β(t)− δ(t))P −h

For instance,
dP

dt
= kP − h has P (t)=Cekt + h/k.

• (spread of incurable virus) Let P (t) count the number of infected population units among total of M .
δ(t)= 0, β(t) proportional to M −P
dP

dt
= kP (M −P ). Once again, the logistic equation. ♦

Example 32. Solve the logistic equation P ′= kP (1−P/M). Separable!

Solution. −M

P (P −M)
dP =

(

1

P
− 1

P −M

)

dP = kdt. We get ln |P | − ln |P −M |= ln
∣

∣

∣

P

P −M

∣

∣

∣
= kt+C.

Hence,
P

P −M
=Dekt with D=±eC. Thus P (t) =

MDekt

Dekt − 1
. [cf. Example 7.] ♦

Linear higher-order differential equations

A linear DE is of the form y(n)+ pn−1(x) y
(n−1)+	 + p1(x)y

′+ p0(x)y= f(x).

• Let I be an interval on which pj(x) and f(x) are continuous. If a ∈ I then a solution to the IVP with

y(a)= b0, y
′(a)= b1, 	 , y(n−1)(a)= bn−1 always exists (actually, on all of I!) and is unique.

If f(x)= 0, then this is called a homogeneous linear DE. In that case:

• If y1 and y2 are solutions, then the superposition Ay1+By2 is a solution.
• (general solution) There are n solutions y1, y2,	 , yn, such that every solution is of the form C1y1+	 +

Cn yn. [These n solutions necessarily are, what we will call, independent.]

Example 33. Suppose that y1 and y2 solve y ′′+ p1(x)y
′+ p0(x)y=0.

(y1+ y2)
′′+ p1(x)(y1+ y2)

′+ p0(x)(y1+ y2)= {y1′′+ p1(x)y1
′ + p0(x)y1}+ {y2′′+ p1(x)y2

′ + p0(x)y2}=0+0
In other words, y1+ y2 is another solution of the DE. ♦

Example 34. x2y ′′+2xy ′− 6y=0 has solutions y1=x2, y2=x−3.

Solve the IVP with y(2)= 10, y ′(2)= 15.

Solution. The general solution is y(x)=Ax2+Bx−3. y ′(x)= 2Ax− 3Bx−4.

y(2)= 4A+B/8= 10, y′(2)= 4A− 3/16B= 15 has solutions A=3, B=−16. So y(x)= 3x2− 16/x3. ♦
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